Good Luck in CET-4 Everybody!

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 14168    Accepted Submission(s): 9029

Problem Description
大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。
“升级”?“双扣”?“红五”?还是“斗地主”?
当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、  总共n张牌;
2、  双方轮流抓牌;
3、  每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、  抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。

Good luck in CET-4 everybody!

 
Input
输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。
 
Output
如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。
 
Sample Input
1
3
 
Sample Output
Kiki
Cici
 

题意:n张牌,两人轮流取,每次只能取2的倍数,取走最后一张的赢

题解:可以用sg函数打表,会发现其实就是当n为3的倍数时,后手必赢

 #include <iostream>
#include <string.h>
#define MAXN 1010
using namespace std; int n, pos=;
int f[MAXN], vis[MAXN], sg[MAXN]; void get_sg(){//**sg函数打表
memset(sg, , sizeof(sg));
for(int i=; i<=MAXN; i++){
memset(vis, , sizeof(vis));
for(int j=; f[j]<=i; j++){
vis[sg[i-f[j]]]=;//标记当前点可以到达的点
}
for(int j=; j<=MAXN; j++){
if(vis[j]==){
sg[i]=j;//第一个不属于mex函数的数
break;
}
}
}
} int main(void){
for(int i=; i<; i*=){
f[pos++]=i;
}
get_sg();
while(cin >> n){
if(sg[n]==){
cout << "Cici" << endl;
}else{
cout << "Kiki" << endl;
}
}
return ;
}

hdu1847Good Luck in CET-4 Everybody!(sg函数)的更多相关文章

  1. HDU1847--Good Luck in CET-4 Everybody!(SG函数)

    Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此.当然,作为在考场浸润了十几载 ...

  2. HDU 1847 Good Luck in CET-4 Everybody!(SG函数)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  3. HDU 1847-Good Luck in CET-4 Everybody!-博弈SG函数模板

    Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此.当然,作为在考场浸润了十几载 ...

  4. HDU1847 Good Luck in CET-4 Everybody 博弈 SG函数

    题意:给定n张牌,两个人轮流摸牌,每次摸牌张数为2的幂次,问先手胜还是后手胜  n≤1000 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1847 # ...

  5. HDU 1847 Good Luck in CET-4 Everybody!(找规律,或者简单SG函数)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  6. SG函数 专题练习

    [hdu1536][poj2960]S-Nim 题意 题意就是给出一个数组h,为每次可以取石子的数目. 然后给你n堆石子每堆si.求解先手能不能赢? 分析 根据\(h\)数组预处理出\(sg[i]\) ...

  7. SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  8. hdu 1847 博弈基础题 SG函数 或者规律2种方法

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  9. hdu 1847(SG函数,巴什博弈)

    Good Luck in CET-4 Everybody! Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

随机推荐

  1. Time Zone 【模拟时区转换】(HDU暑假2018多校第一场)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6308 Time Zone Time Limit: 2000/1000 MS (Java/Others)  ...

  2. Educational Codeforces Round 56 (Rated for Div. 2) D. Beautiful Graph 【规律 && DFS】

    传送门:http://codeforces.com/contest/1093/problem/D D. Beautiful Graph time limit per test 2 seconds me ...

  3. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

  4. python-常用模块之os、sys

    一.os os模块包含普遍的操作系统功能: os.pardir #获取当前目录的父目录字符串名:('..') os.makedirs('dirname1/dirname2') #可生成多层递归目录 o ...

  5. 【Nginx】使用Nginx作为Http代理的配置文件

    请看配置文件中的注释~ #user nobody; worker_processes 1; #pid logs/nginx.pid; events { worker_connections 1024; ...

  6. 选择排序_c++

    选择排序_c++ GitHub 文解 选择排序的核心思想是对于 N 个元素进行排序时,对其进行 K = (N - 1) 次排序,每次排序从后(N + 1 - K)个数值中选择最小的元素与以 (K - ...

  7. python函数调用时传参方式

    位置参数 位置参数需与形参一一对应 def test(a,b) #a,b就是位置参数 print(a) print(b) test(1,2)   关键字参数 与形参顺序无关 def test(x,y) ...

  8. Zabbix——部署(agent和proxy安装)

    前提条件: 已经完成对Zabbix-server的安装 已经完成对Mysql的安装 并且相互和正常使用和访问 配置agent服务器: rpm -Uvh https://repo.zabbix.com/ ...

  9. springboot-自定义起步依赖

    自定义起步依赖步骤: 1.  添加configuration注解文件 -          指定什么情况下加载配置 -          使用enableconfigurationProperties ...

  10. 多用户OFDM系统资源分配研究

    首先,OFDMA 是什么? OFDM 技术的基本原理是将无线信道划分为若干互相正交的子信道,把高速串行数据流转化为低速并行子数据流,低速并行子数据流在子信道上独立传输. OFDMA 是LTE的下行多址 ...