吴裕雄 python 机器学习——混合高斯聚类GMM模型
import numpy as np
import matplotlib.pyplot as plt from sklearn import mixture
from sklearn.metrics import adjusted_rand_score
from sklearn.datasets.samples_generator import make_blobs def create_data(centers,num=100,std=0.7):
X, labels_true = make_blobs(n_samples=num, centers=centers, cluster_std=std)
return X,labels_true #混合高斯聚类GMM模型
def test_GMM(*data):
X,labels_true=data
clst=mixture.GaussianMixture()
clst.fit(X)
predicted_labels=clst.predict(X)
print("ARI:%s"% adjusted_rand_score(labels_true,predicted_labels)) # 用于产生聚类的中心点
centers=[[1,1],[2,2],[1,2],[10,20]]
# 产生用于聚类的数据集
X,labels_true=create_data(centers,1000,0.5)
# 调用 test_GMM 函数
test_GMM(X,labels_true)
def test_GMM_n_components(*data):
'''
测试 GMM 的聚类结果随 n_components 参数的影响
'''
X,labels_true=data
nums=range(1,50)
ARIs=[]
for num in nums:
clst=mixture.GaussianMixture(n_components=num)
clst.fit(X)
predicted_labels=clst.predict(X)
ARIs.append(adjusted_rand_score(labels_true,predicted_labels))
## 绘图
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(nums,ARIs,marker="+")
ax.set_xlabel("n_components")
ax.set_ylabel("ARI")
fig.suptitle("GMM")
plt.show() # 调用 test_GMM_n_components 函数
test_GMM_n_components(X,labels_true)
def test_GMM_cov_type(*data):
'''
测试 GMM 的聚类结果随协方差类型的影响
'''
X,labels_true=data
nums=range(1,50) cov_types=['spherical','tied','diag','full']
markers="+o*s"
fig=plt.figure()
ax=fig.add_subplot(1,1,1) for i ,cov_type in enumerate(cov_types):
ARIs=[]
for num in nums:
clst=mixture.GaussianMixture(n_components=num,covariance_type=cov_type)
clst.fit(X)
predicted_labels=clst.predict(X)
ARIs.append(adjusted_rand_score(labels_true,predicted_labels))
ax.plot(nums,ARIs,marker=markers[i],label="covariance_type:%s"%cov_type) ax.set_xlabel("n_components")
ax.legend(loc="best")
ax.set_ylabel("ARI")
fig.suptitle("GMM")
plt.show() # 调用 test_GMM_cov_type 函数
test_GMM_cov_type(X,labels_true)
吴裕雄 python 机器学习——混合高斯聚类GMM模型的更多相关文章
- 吴裕雄 python 机器学习——K均值聚类KMeans模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——超大规模数据集降维IncrementalPCA模型
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- 吴裕雄 python 机器学习——数据预处理正则化Normalizer模型
from sklearn.preprocessing import Normalizer #数据预处理正则化Normalizer模型 def test_Normalizer(): X=[[1,2,3, ...
- 吴裕雄 python 机器学习——数据预处理标准化MaxAbsScaler模型
from sklearn.preprocessing import MaxAbsScaler #数据预处理标准化MaxAbsScaler模型 def test_MaxAbsScaler(): X=[[ ...
- 吴裕雄 python 机器学习——数据预处理标准化StandardScaler模型
from sklearn.preprocessing import StandardScaler #数据预处理标准化StandardScaler模型 def test_StandardScaler() ...
- 吴裕雄 python 机器学习——数据预处理标准化MinMaxScaler模型
from sklearn.preprocessing import MinMaxScaler #数据预处理标准化MinMaxScaler模型 def test_MinMaxScaler(): X=[[ ...
- 吴裕雄 python 机器学习——支持向量机线性分类LinearSVC模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...
- 吴裕雄 python 机器学习——数据预处理字典学习模型
from sklearn.decomposition import DictionaryLearning #数据预处理字典学习DictionaryLearning模型 def test_Diction ...
- 吴裕雄 python 机器学习——数据预处理流水线Pipeline模型
from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn import neighbor ...
随机推荐
- [改错_19/04/01] 学习Java.IO 对象数据流时出现 Exception in thread "main" java.io.EOFException ...at cn.sxt.test.Test_DataStream.main(Test_DataStream.java:31) 错误 .
过程描述:编译可以通过,就是每次运行时出现如下的图片,百思不得其解. 错误原因: byte[] datas=baos.toByteArray(); 放在了oos.writeInt(14);oos.fl ...
- 【CSS】易错
1.外边距默认是透明的,因此不会遮挡其后的任何元素.2.背景应用于由内容和内边距.边框组成的区域.3.外边距可以是负值,而且在很多情况下都要使用负值的外边距.4.不要给元素添加具有指定宽度的内边距,而 ...
- 【转】Nginx反向代理转发tomcat
http://blog.csdn.net/mlc1218559742/article/details/53117520 最近刚接触nginx,在网上查阅了相关资料,看到最多的形容nginx的词就是反向 ...
- 四. 引入unittest单元测试框架
1. 安装 SeleniumIDE(firefox) (1)下载地址:https://addons.mozilla.org/en-US/firefox/addon/selenium-ide/ (2 ...
- 443M衣架遥控arduino代码备档
] = {,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}; ] = {,,,,,,,,,,,,,,,,,,,,,,, ...
- 【题解】POJ 3417 Network(倍增求LCA+DP+树上差分)
POJ3417:http://poj.org/problem?id=3417 思路 我们注意到由“主要边”构成一颗树 “附加边”则是非树边 把一条附加边(x,y)加入树中 会与树上x,y之间构成一个环 ...
- java 时间日期
Java 日期时间 java.util 包提供了 Date 类来封装当前的日期和时间. Date 类提供两个构造函数来实例化 Date 对象. 第一个构造函数使用当前日期和时间来初始化对象. Date ...
- JS异步编程 (1)
JS异步编程 (1) 1.1 什么叫异步 异步(async)是相对于同步(sync)而言的,很好理解. 同步就是一件事一件事的执行.只有前一个任务执行完毕,才能执行后一个任务.而异步比如: setTi ...
- 安装oracle11g时遇到环境不满足最低要求
在安装oracle11g时出现问题:INS-13001环境不满足最低要求 解决方法:找到下载解压后的文件,依次打开以下文件路径:Oracle11g\database\stage\cvu, 在cvu文件 ...
- 【模板】RMQ(计算区间最值)
①一维RMQ (1) dp[i,j] 表示从第i个数起连续2j个数中的(最大值min.最小值max.最大公约数gcd……),通过更改下列代码中的红色函数即可实现. (2) b数组放置所需查询的数列. ...