https://blog.csdn.net/zfq17796515982/article/details/83051495

题意:解方程:a-(a^x)-x=0 给出a的值,要求计算解(非负)的个数

题解:需要^和 - 起到相同的效果。

1^1=0 1-1=0

1^0=1 1-0=1

0^0=0 0-0=0,

0^1=1 0-1=-1

a的二进制位上为1时,x的二进制位上为1或者0,异或和减的效果相同。

a的二进制有几个1,就表示解的个数有2的几次方个

 #include<bits/stdc++.h>
using namespace std;
int main()
{
int t;
while(~scanf("%d",&t))
{
while(t--)
{
long long n;
scanf("%lld",&n);
long long ans=;
int num=;
while(n)
{
if(n&)
{
n/=;
num++;
}
else
{
n/=;
}
}
ans=pow(,num);
printf("%lld\n",ans);
}
}
return ;
}

cf#516B. Equations of Mathematical Magic(二进制,位运算)的更多相关文章

  1. CF 1064B Equations of Mathematical Magic(思维规律)

    Description Colossal! — exclaimed Hawk-nose. — A programmer! That's exactly what we are looking for. ...

  2. 面试必备:高频算法题终章「图文解析 + 范例代码」之 矩阵 二进制 + 位运算 + LRU 合集

    Attention 秋招接近尾声,我总结了 牛客.WanAndroid 上,有关笔试面经的帖子中出现的算法题,结合往年考题写了这一系列文章,所有文章均与 LeetCode 进行核对.测试.欢迎食用 本 ...

  3. CF1064B 【Equations of Mathematical Magic】

    题目要求解$a-(a\oplus x)-x=0$的解$x$的个数 移项得$a-x=a\oplus x$ $a$的二进制形式,应该是一个$01$串,异或的过程是不能影响到两个不同的位的,所以我们按位考虑 ...

  4. [ CodeForces 1064 B ] Equations of Mathematical Magic

    \(\\\) \(Description\) \(T\) 组询问,每次给出一个 \(a\),求方程 \[ a-(a\oplus x)-x=0 \] 的方案数. \(T\le 10^3,a\le 2^{ ...

  5. B. Equations of Mathematical Magic

    思路 打表找规律,发现结果是,2的(a二进制位为1总数)次方 代码 #include<bits/stdc++.h> using namespace std; #define ll long ...

  6. Codeforces Round #443 (Div. 1) D. Magic Breeding 位运算

    D. Magic Breeding link http://codeforces.com/contest/878/problem/D description Nikita and Sasha play ...

  7. UVA 213 信息解码(二进制&位运算)

    题意: 出自刘汝佳算法竞赛入门经典第四章. 考虑下面的01串序列: 0, 00, 01, 10, 000, 001, 010, 011, 100, 101, 110, 0000, 0001, …, 1 ...

  8. JAVA:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题(5)

    一.二进制,位运算,移位运算 1.二进制 对于原码, 反码, 补码而言, 需要注意以下几点: (1).Java中没有无符号数, 换言之, Java中的数都是有符号的; (2).二进制的最高位是符号位, ...

  9. Java学习第五篇:二进制(原码 反码 补码),位运算,移位运算,约瑟夫问题

    一.二进制,位运算,移位运算 1.二进制 对于原码, 反码, 补码而言, 需要注意以下几点: (1).Java中没有无符号数, 换言之, Java中的数都是有符号的; (2).二进制的最高位是符号位, ...

随机推荐

  1. PHP------------正则表达式应用——实例应用

    正则表达式应用——实例应用     1.验证用户名和密码:("^[a-zA-Z]\w{5,15}$")正确格式:"[A-Z][a-z]_[0-9]"组成,并且第 ...

  2. 【题解】洛谷P1879 [USACO06NOV] Corn Fields(状压DP)

    洛谷P1879:https://www.luogu.org/problemnew/show/P1879 思路 把题目翻译成人话 在n*m的棋盘 每个格子不是0就是1 1表示可以种 0表示不能种 相邻的 ...

  3. HDU 1018Big Number(大数的阶乘的位数,利用公式)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1018 Big Number Time Limit: 2000/1000 MS (Java/Others) ...

  4. ffmpeg 简单使用总结

    FFMPEG 生成指定长度的空白音频: ffmpeg -f lavfi -i aevalsrc=0 -t seconds -q:a 9 -acodec libmp3lame out.mp3 FFMPE ...

  5. 搭建Hadoop2.6.0+Spark1.1.0集群环境

    前几篇文章主要介绍了单机模式的hadoop和spark的安装和配置,方便开发和调试.本文主要介绍,真正集群环境下hadoop和spark的安装和使用. 1. 环境准备 集群有三台机器: master: ...

  6. LeetCode 中级 -二叉树的层次遍历(102)

    题目描述: 给定一个二叉树,返回其按层次遍历的节点值. (即逐层地,从左到右访问所有节点). 例如:给定二叉树: [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 ...

  7. UCanCode发布升级E-Form++可视化源码组件库2018全新版 !

    2018年. 成都 UCanCode发布升级E-Form++可视化源码组件库2018全新版 ! --- 全面性能提升,UCanCode有史以来最强大的版本发布! E-Form++可视化源码组件库企业版 ...

  8. window下pip install Scrapy报错解决方案

    1.首先打开https://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted,找到对应版本的Twisted并下载到你的文件夹. 2.利用pip install命令 ...

  9. Jboot使用appassembler-maven-plugin插件生成启动脚本

    appassembler-maven-plugin介绍: 使用appassembler-maven-plugin插件可自动生成跨平台的启动脚本,可省去手工写脚本的麻烦,而且还可以生成jsw的后台运行程 ...

  10. JavaSE环境下的shiro(源自腾讯课堂)

    Shiro作用: 认证(登录).授权(鉴权).加密(用户名/密码加密).会话管理(session).Web集成.缓存 apache官网可以下载 图一 图二 图三 图一 .二是配置文件内容,对于图三的: ...