转:http://blog.csdn.net/tina_ttl/article/details/51556984

今天才偶然发现,caffe在计算Accuravy时,利用的是最后一个全链接层的输出(不带有acitvation function),比如:alexnet的train_val.prototxt、caffenet的train_val.prototxt

下图是这两个网络训练配置文件(prototxt文件)计算Accuray的配置文件截图的截图(对于该部分,alexnet和caffenet是一致的)

  • 最后一个全连接层
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1000
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
  • 计算Accuracy
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}

可以看到,caffe中计算Accuracy时,是通过比较最后一个全连接层(神经元个数=类别数、但没有加入activation function)的输出和数据集的labels来得到的,计算过程在AccuracyLayer中实现

之前一直非常困惑,计算accuracy应该使用计算得到的labels与数据集真正的labels去做计算,为什么caffe的accuracy要将fc8接入Accuray层呢?通过简单查看AccuracyLayer的说明才发现,原来,在AccuracyLayer内部,实现了“利用fc8的输出得到数据集的预测labels”(数值最大的那个值得idnex就是样本的类别),那么,再与输入的数据集真实lebels作对比,就实现了accuray的计算!

实际上,如果仅仅是做预测,利用fc8的输出就够了(输出值最大的那个位置即为输入的label),该输出表示了输入的样本属于每一类的可能性大小,但并不是概率值; 
如果为了使输出具有统计意义,需要加入softmax function,它只是使前面的全连接层的输出(fc8)具有了概率意义,并不改变这些输出之前的大小关系,因为softmax function本身就是增函数; 
为了利用误差反向传播,还需要构造loss function,需要利用softmax function的输出,即需要利用输入样本属于每一类的概率值;

注意:

    • 最后一个全连接层(fc8)的输出值位于区间[−∞,∞],它并不是概率值

    • fc8后面接的SoftmaxWithLoss层做的工作分2步

      • 第一步:对fc8的输出计算softmax function(结果为概率值)
      • 第二步:利用求得的概率值计算Loss
      • caffe中的softmaxWithLoss其实是:
      • softmaxWithLoss = Multinomial Logistic Loss Layer + Softmax Layer

        其中: 
        Multinomial Logistic Loss Layer 即为交叉熵代价函数 
        Softmax Layer其实就是指softmax function(全连接那一步在它前面的fc中实现)

        示意图如下: 

        应该注意,这里的Softmax Layer与机器学习中提到的softmax regression有一个小小的不同:它没有将前面的全连接层考虑在内,也就是说,它将softmax regression进行了分解:

        softmax regression = 全连接层 + softmax layer (即softmax function)


        另外,softmax function那个过程,按照如下方式绘制展示可能会更加明白 

         
         

caffe中的Accuracy+softmaxWithLoss的更多相关文章

  1. caffe 中 plot accuracy和loss, 并画出网络结构图

    plot accuracy + loss 详情可见:http://www.2cto.com/kf/201612/575739.html 1. caffe保存训练输出到log 并绘制accuracy l ...

  2. 在Caffe中实现模型融合

    模型融合 有的时候我们手头可能有了若干个已经训练好的模型,这些模型可能是同样的结构,也可能是不同的结构,训练模型的数据可能是同一批,也可能不同.无论是出于要通过ensemble提升性能的目的,还是要设 ...

  3. caffe中ConvolutionLayer的前向和反向传播解析及源码阅读

    一.前向传播 在caffe中,卷积层做卷积的过程被转化成了由卷积核的参数组成的权重矩阵weights(简记为W)和feature map中的元素组成的输入矩阵(简记为Cin)的矩阵乘积W * Cin. ...

  4. caffe中各层的作用:

    关于caffe中的solver: cafffe中的sover的方法都有: Stochastic Gradient Descent (type: "SGD"), AdaDelta ( ...

  5. CAFFE中训练与使用阶段网络设计的不同

    神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使 ...

  6. 【神经网络与深度学习】如何在Caffe中配置每一个层的结构

    如何在Caffe中配置每一个层的结构 最近刚在电脑上装好Caffe,由于神经网络中有不同的层结构,不同类型的层又有不同的参数,所有就根据Caffe官网的说明文档做了一个简单的总结. 1. Vision ...

  7. caffe中权值初始化方法

    首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如果想看,可以看看哦,反正我是不想看,代码细节吧,现在不想知道太多,有个宏观的idea就可以啦,如果想看代 ...

  8. 在caffe中使用hdf5的数据

    caffe默认使用的数据格式为lmdb文件格式,它提供了把图片转为lmdb文件格式的小程序,但是呢,我的数据为一维的数据,我也要分类啊,那我怎么办?肯定有办法可以转为lmdb文件格式的,我也看了一些源 ...

  9. caffe中python接口的使用

    下面是基于我自己的接口,我是用来分类一维数据的,可能不具通用性: (前提,你已经编译了caffe的python的接口) 添加 caffe塻块的搜索路径,当我们import caffe时,可以找到. 对 ...

随机推荐

  1. Java开发工程师(Web方向) - 01.Java Web开发入门 - 第6章.蜂巢

    第6章--蜂巢 蜂巢简介 网站开发完,就需要测试.部署.在服务器上运行. 网易蜂巢: 采用Docker容器化技术的云计算平台 https://c.163.com 容器管理:容器可被视作为云主机的服务器 ...

  2. 特殊符号 & 以太坊

    &表示取二进制的末尾 &1表示如果末尾是奇数和偶数两种情况 0 偶数 1奇数 举例子: int a=1;int p=&a; 其中,p是指针,&a就是将a在内存中的实际地 ...

  3. 如果jsp表单元素的值为空,如何避免null出现在页面上?

    可以写一个简单的函数对空值进行处理,判断值是否为空,如果是空就返回空字符串.实例代码如下: <%! String blanknull(String s) { return (s == null) ...

  4. 2019寒假训练营寒假作业(二) MOOC的网络空间安全概论笔记部分

    视频课程--MOOC的网络空间安全概论笔记 第一章 网络空间安全概述 2001年,网络空间概念被首次提出: 网络空间安全框架: 1.设备层安全: 可通过截获电磁辐射获取计算机信息.通过硬件木马(恶意电 ...

  5. 软工1816 · Alpha冲刺(4/10)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 完成菜品信息的标定.量化以及整理成csv的任务   接下来的计划 & ...

  6. 【转载】【翻译】Breaking things is easy///机器学习中安全与隐私问题(对抗性攻击)

    原文:Breaking things is easy 译文:机器学习中安全与隐私问题(对抗性攻击) 我是通过Infaraway的那篇博文才发现cleverhans-blog的博客的,这是一个很有意思的 ...

  7. TCP系列33—窗口管理&流控—7、Silly Window Syndrome(SWS)

    一.SWS介绍 前面我们已经通过示例看到如果接收端的应用层一直没有读取数据,那么window size就会慢慢变小最终可能变为0,此时我们假设一种场景,如果应用层读取少量数据(比如十几bytes),接 ...

  8. 对alpha发布的总结技术随笔

    对于今天的alpha发布,首先需要自我检讨,因为我们组没有展示作品.主要的原因还是我们投入的时间不足.我们的项目是约跑App,首先选择做安卓平台的东西,我们大家都需要熟悉新的开发软件Android S ...

  9. VBA练习-复杂一点

    '日期添加 Sub addDate(d) Dim rg As Range, dd As Date d = Split(d, ) d = Replace(d, ".", " ...

  10. 第一篇:python基础_1

    本篇内容 Python介绍 安装 第一个程序(hello,world) 变量 用户输入(input) 数据类型 数据运算 if判断 break和continue的区别 while 循环 一. Pyth ...