一眼题...输出分数格式才是这题的难点QAQ

  学习了分数结构体...

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct fra{ll u,d;fra(ll a=,ll b=){u=a,d=b;}}f[maxn][maxn];
int n,m;
bool mp[maxn][maxn];
int readch()
{
char ch=getchar();
while(ch==' '||ch=='\n'||ch=='\t'||ch=='\r')ch=getchar();
return ch=='*';
}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void sim(fra &x){ll t=gcd(x.u,x.d);x.u/=t;x.d/=t;}
fra operator+(fra x,fra y)
{
ll t=gcd(x.d,y.d);
fra c=fra(y.d/t*x.u+x.d/t*y.u,x.d/t*y.d);
return sim(c),c;
}
fra operator*(fra x,fra y)
{
fra c=fra(x.u*y.u,x.d*y.d);
return sim(c),c;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
mp[i][j]=readch();
f[][]=fra(,);
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
if(mp[i][j])f[i+][j]=f[i+][j]+f[i][j]*fra(,),f[i+][j+]=f[i+][j+]+f[i][j]*fra(,);
else f[i+][j+]=f[i+][j+]+f[i][j];
printf("%lld/%lld",f[n+][m+].u,f[n+][m+].d);
return ;
}

bzoj1867: [Noi1999]钉子和小球(DP)的更多相关文章

  1. bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球

    http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j]   ...

  2. 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)

    传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...

  3. [bzoj1867][Noi1999][钉子和小球] (动态规划)

    Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...

  4. BZOJ 1867 [Noi1999]钉子和小球 DP

    想状态和钉子的位置如何匹配想了半天...后来发现不是一样的吗$qwq$ 思路:当然是$DP$啦 提交:>5次(以为无故$RE$,实则是先乘后除爆了$long\space long$) 题解: 若 ...

  5. bzoj 1867: [Noi1999]钉子和小球【dp】

    设f[i][j]为掉到f[i][j]时的概率然后分情况随便转移一下就好 主要是要手写分数比较麻烦 #include<iostream> #include<cstdio> usi ...

  6. [POJ1189][BZOJ1867][CODEVS1709]钉子和小球

    题目描述 Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且 ...

  7. POJ1189钉子和小球(DP)

    对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...

  8. POJ-1189 钉子和小球(动态规划)

    钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...

  9. codevs 1709 钉子和小球

    1709 钉子和小球 1999年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 查看运行结果题目描述 Description有一个三角形木板 ...

随机推荐

  1. hdu2098分拆素数和(素数+暴力)

    分拆素数和 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  2. OpenSUSE 11 安装Qt5.0,失败,失败,失败,留个坑,以后来填,万一实现了呢

    我又来无耻的写问题来了,这次还真的是没有解决,线留坑吧,万一以后实现了. 同样,这次也是以恶搞网友说听说想在open suse 上面安装5.0版本以后的Qt,自己折腾好几没有成功. 我一想,哎,这不是 ...

  3. CSS选择器语法&示例

    CSS3 选择器 在 CSS 中,选择器是一种模式,用于选择需要添加样式的元素. "CSS" 列指示该属性是在哪个 CSS 版本中定义的.(CSS1.CSS2 还是 CSS3.) ...

  4. Kotlin对象:仅一行代码就可创建安全的单例

    作者:Antonio Leiva 时间:Jun 20, 2017 原文链接:https://antonioleiva.com/objects-kotlin/ Kotlin对象是Android开发人员不 ...

  5. ant-design学习准备_1

    在学习ant-desin过程中,发现很多知识都不清楚,从现在开始,每天将自己学习到的知识进行一个总结记录,前端大佬勿扰勿喷.先介绍几个基础概念和一些常用命令: 1.什么是脚手架 我们经常在各个博客论坛 ...

  6. Siki_Unity_1-2_Unity5.2入门课程_进入Unity开发的奇幻世界_Roll A Ball

    1-2 Unity5.2入门课程 进入Unity开发的奇幻世界 任务1:Roll A Ball项目简介 Unity官网的tutorial入门项目 方向键控制小球在平台上滚动,碰撞方块得分,消掉所有方块 ...

  7. Java开发工程师(Web方向) - 02.Servlet技术 - 第3章.Servlet应用

    第3章.Servlet应用 转发与重定向 转发:浏览器发送资源请求到ServletA后,ServletA传递请求给ServletB,ServletB生成响应后返回给浏览器. 请求转发:forward: ...

  8. Java注解的基本原理

    注解的本质就是一个继承了Annotation接口的接口,一个注解准确意义上来说,只不过是一种特殊注释而已,如果没有解析他的代码,他可能连注释都不如. 解析一个类或者方法的注解往往有两种形式,一种是编译 ...

  9. lintcode172 删除元素

    删除元素   给定一个数组和一个值,在原地删除与值相同的数字,返回新数组的长度. 元素的顺序可以改变,并且对新的数组不会有影响. 您在真实的面试中是否遇到过这个题? Yes 样例 给出一个数组 [0, ...

  10. Java学习笔记-11.运行期间类型鉴定

    1.Class对象的getClasses()方法获取的是该类中所有的公共的内部类,以及从父类,父接口继承来的内部类.getinterfaces()方法返回类继承的所有接口. import javax. ...