bzoj1867: [Noi1999]钉子和小球(DP)
一眼题...输出分数格式才是这题的难点QAQ
学习了分数结构体...
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=,inf=1e9;
struct fra{ll u,d;fra(ll a=,ll b=){u=a,d=b;}}f[maxn][maxn];
int n,m;
bool mp[maxn][maxn];
int readch()
{
char ch=getchar();
while(ch==' '||ch=='\n'||ch=='\t'||ch=='\r')ch=getchar();
return ch=='*';
}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void sim(fra &x){ll t=gcd(x.u,x.d);x.u/=t;x.d/=t;}
fra operator+(fra x,fra y)
{
ll t=gcd(x.d,y.d);
fra c=fra(y.d/t*x.u+x.d/t*y.u,x.d/t*y.d);
return sim(c),c;
}
fra operator*(fra x,fra y)
{
fra c=fra(x.u*y.u,x.d*y.d);
return sim(c),c;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
mp[i][j]=readch();
f[][]=fra(,);
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
if(mp[i][j])f[i+][j]=f[i+][j]+f[i][j]*fra(,),f[i+][j+]=f[i+][j+]+f[i][j]*fra(,);
else f[i+][j+]=f[i+][j+]+f[i][j];
printf("%lld/%lld",f[n+][m+].u,f[n+][m+].d);
return ;
}
bzoj1867: [Noi1999]钉子和小球(DP)的更多相关文章
- bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球
http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j] ...
- 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)
传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...
- [bzoj1867][Noi1999][钉子和小球] (动态规划)
Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...
- BZOJ 1867 [Noi1999]钉子和小球 DP
想状态和钉子的位置如何匹配想了半天...后来发现不是一样的吗$qwq$ 思路:当然是$DP$啦 提交:>5次(以为无故$RE$,实则是先乘后除爆了$long\space long$) 题解: 若 ...
- bzoj 1867: [Noi1999]钉子和小球【dp】
设f[i][j]为掉到f[i][j]时的概率然后分情况随便转移一下就好 主要是要手写分数比较麻烦 #include<iostream> #include<cstdio> usi ...
- [POJ1189][BZOJ1867][CODEVS1709]钉子和小球
题目描述 Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且 ...
- POJ1189钉子和小球(DP)
对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...
- POJ-1189 钉子和小球(动态规划)
钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...
- codevs 1709 钉子和小球
1709 钉子和小球 1999年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 查看运行结果题目描述 Description有一个三角形木板 ...
随机推荐
- 「日常训练」Two Substrings(Codeforces Round 306 Div.2 A)
题意与分析 一道非常坑的水题.分析醒了补. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back ...
- Linux命令应用大词典-第34章 打印与传真
34.1 lpr:打印文件 34.2 lpq:显示打印队列状态 34.3 lprm:取消打印作业 34.4 lpstat:显示cups状态信息 34.5 cupsaccept:接受作业发送到目的地 3 ...
- 82. Single Number [easy]
Description Given 2*n + 1 numbers, every numbers occurs twice except one, find it. Example Given [1, ...
- 【RandomString】- 随机字符串
RandomString 随机字符串的用法
- Vuejs 基础与语法
Vue 实例 创建第一个实例 {{}} 被称之为插值表达式.可以用来进行文本插值. <!DOCTYPE html> <html lang="en"> < ...
- [精通Python自然语言处理] Ch1 - 将句子切分为单词
实验对比了一下三种切分方式: 1,2 : nltk.word_tokenize : 分离缩略词,(“Don't” =>'Do', "n't") 表句子切分的“,” &quo ...
- MyEclipse2013使用总结
1.myeclipse10中怎样将建的包设置成树形结构或者并列结构. 右上边三角那里进去设置选第一个是显示完整的包名,第二个显示的是树形结构这种方法没效 2.从高版本到项目的低版本的MyEclipse ...
- java集合类小结
1 集合的框架体系 List简介 集合的使用场合 List(链表|线性表)和Set(集) java.util.Collection ---| Collection 描述所有接口的共性 ----| Li ...
- C# lamda表达式
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- Linux面试题汇总答案(转)
转自:小女生的Linux技术~~~Linux面试题汇总答案~~ 一.填空题:1. 在Linux系统中,以 文件 方式访问设备 .2. Linux内核引导时,从文件 /etc/fstab 中读取要加载的 ...