【数位DP】【SCOI2009】windy数
Description
\(windy\)定义了一种\(windy\)数。不含前导零且相邻两个数字之差至少为\(2\)的正整数被称为\(windy\)数。\(windy\)想知道,
在\(A\)和\(B\)之间,包括\(A\)和\(B\),总共有多少个\(windy\)数?
Input
包含两个整数,\(A,B\)。
Output
一个整数
Sample Input
25 50
Sample Output
20
Hint
\(For~All:\)
\(1~\leq~A~\leq~B~\leq~2~\times~10^9\)
Solution
数位DP。
数位DP的DP状态一般含有如下参数:
1、从高到低当前填到了第几位。
2、当前这一位的数是几。
3、这一位是否等于一个上界x。一般而言,大于上界没有意义,所以可以用一个二进制表示等于或小于。
4、从最高位到这一位是否全为0
对于具体题目,需要根据要求增删状态。
对于本题而言,可以设\(f_{i,j,0/1,0/1}\)代表从高到低填到了第i位,当前这一位数字是j,否/是等于0,否/是全为0的方案数
考虑\([A,B]\)间的答案就等于小于\(B\)的答案减去小于\(A-1\)的答案。于是可以分别把\(B\)和\(A-1\)作为上界x求得答案相减。
预处理:处理出第一位所有的情况。具体的,设第一位是\(s_1\),则\(f_{1,j,0,0}=1|j<s_1\),\(f_{1,0,0,1}=1\),\(f_{1,s_1,1,0}=1\)
转移方面,这里使用刷表法刷出下一维。具体的,枚举当前是什么状态,枚举下一位的数字是谁。
直接累加小于上界且从小于上界的状态转移的答案,对于等于上界的状态,转移到等于上界的状态。注意区分小于和等于在第3维上的差异。
显然每一位全是前导零的方案数是1。对于本位置全是前导0的方案,可以更新下一位填任意位置小于上界的状态。
最后累加答案为\(ans=(\sum_{j<s_{len}}f_{len,j,0,0})+f_{len,s_{len},1,0}\)。其中len为上界x的位数。
看着发晕的话可以参考代码
Code
#include<cstdio>
#include<cstring>
#define rg register
#define ci const int
#define cl const long long int
typedef long long int ll;
namespace IO {
char buf[90];
}
template<typename T>
inline void qr(T &x) {
char ch=getchar(),lst=' ';
while(ch>'9'||ch<'0') lst=ch,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst=='-') x=-x;
}
template<typename T>
inline void write(T x,const char aft,const bool pt) {
if(x<0) x=-x,putchar('-');
int top=0;
do {
IO::buf[++top]=x%10+'0';
x/=10;
} while(x);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
}
template<typename T>
inline T mmax(const T a,const T b) {if(a>b) return a;return b;}
template<typename T>
inline T mmin(const T a,const T b) {if(a<b) return a;return b;}
template<typename T>
inline T mabs(const T a) {if(a<0) return -a;return a;}
template<typename T>
inline void mswap(T &a,T &b) {
T temp=a;a=b;b=temp;
}
const int maxs = 15;
ll a,b;
ll frog[maxs][maxs][5][5],st[maxs];
ll dp(ll x);
int main() {
qr(a);qr(b);
a=dp(a-1);memset(frog,0,sizeof frog);b=dp(b);
write(b-a,'\n',true);
return 0;
}
ll dp(ll x) {
int len=0;
rg ll tx=x;
do {++len;} while(tx/=10);if(!x) len=0; //确定x的位数
for(rg int i=len;i;--i) st[i]=x%10,x/=10; //st[i]即为s数组,存储x每一位的值
for(rg int i=1;i<st[1];++i) frog[1][i][0][0]=1;
frog[1][st[1]][1][0]=frog[1][0][0][1]=1;
/*
*初始化:
*第一位填小于s[1]的数,整个数小于x前1位且无前导0的方案数
*=第一位填s[1]的数,整个数等于x前1位的方案数
*=全部填0的方案数=1
*/
for(rg int i=1;i<len;++i) {
rg int di=i+1; //下一位置
for(rg int j=0;j<10;++j) {
for(rg int k=0;k<10;++k) {
if(mabs(j-k) >= 2) { //如果这一位合法
frog[di][k][0][0]+=frog[i][j][0][0]; //这一位填k的方案数,从上一位的数小于x转移
if(k < st[di]) frog[di][k][0][0]+=frog[i][j][1][0];
//从上一位等于x的数转移到这一位小于x的答案
else if(k == st[di]) frog[di][k][1][0]+=frog[i][j][1][0];
//从上一位等于x的数转移到这一位等于x的答案
}
}
}
frog[di][0][0][1]=1; //下一位全是前导0的方案数为1
for(rg int j=1;j<10;++j) frog[di][j][0][0]+=frog[i][0][0][1];
//由这一位全是前导0可以更新下一位的不取0的所有情况。
}
ll _ans=0;
for(rg int i=0;i<10;++i) _ans+=frog[len][i][0][0];
_ans+=frog[len][st[len]][1][0];
return _ans;
}
Summary
数位dp状态的确定:
1、从高到低当前填到了第几位。
2、当前这一位的数是几。
3、这一位是否等于一个上界x。一般而言,大于上界没有意义,所以可以用一个二进制表示等于或小于。
4、从最高位到这一位是否全为0
转移细节比较多,需要留心
【数位DP】【SCOI2009】windy数的更多相关文章
- 数位dp——BZOJ1026 Windy数
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MB Description windy定义了一种windy数.不含前导零且相邻 ...
- [暑假集训--数位dp]UESTC250 windy数
windy定义了一种windy数. 不含前导零且相邻两个数字之差至少为22 的正整数被称为windy数. windy想知道,在AA 和BB 之间,包括AA 和BB ,总共有多少个windy数? Inp ...
- bzoj 1026 [SCOI2009]windy数 数位dp
1026: [SCOI2009]windy数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- bzoj 1026 [SCOI2009]windy数(数位DP)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4550 Solved: 2039[Submit][Sta ...
- BZOJ_1026_[SCOI2009]windy数_数位DP
BZOJ_1026_[SCOI2009]windy数_数位DP 题意:windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之 ...
- bzoj1026: [SCOI2009]windy数(数位dp)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8203 Solved: 3687[Submit][Sta ...
- luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索
题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...
- 2018.06.30 BZOJ1026: [SCOI2009]windy数(数位dp)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MB Description windy定义了一种windy数.不含前导零且相邻两 ...
- 1026: [SCOI2009]windy数(数位dp)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9016 Solved: 4085[Submit][Sta ...
- bzoj1026: [SCOI2009]windy数(传说你是数位DP)
1026: [SCOI2009]windy数 题目:传送门 题解: 其实之前年少无知的时候好像A过...表示当时并不知道什么数位DP 今天回来深造一发... 其实如果对这个算法稍有了解...看到这题的 ...
随机推荐
- 用Anko和Kotlin实现Android上的对话框和警告提示(KAD 24)
作者:Antonio Leiva 时间:Mar 9, 2017 原文链接:https://antonioleiva.com/dialogs-android-anko-kotlin/ 借助Builder ...
- Java 语法基础
一 关键字 关键字: 其实就是某种语言赋予了特殊含义的单词 保留字: 其实就是还没有赋予特殊含义 但是准备日后要使用过的单词 二 标示符 标示符: 其实就是在程序中自定义的名词 比如类名, 变量名, ...
- Struts2(九.利用layer组件实现图片显示功能)
1.layer前端组件介绍 layer是一款口碑极佳的web弹层组件,她具备全方位的解决方案,致力于服务各个水平段的开发人员,您的页面会轻松地拥有丰富而友好的操作体验. http://sentsin. ...
- JVM学习--jvm监控和故障处理工具
java虚拟机性能监控常用命令 Sun JDK监控和故障处理命令有jps.jstat.jinfo.jmap.jhat.jstack . 1.jps jps:JVM Process Status Too ...
- leetcode-组合总数IV(动态规划)
377. 组合总和 Ⅳ 给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数. 示例: nums = [1, 2, 3] target = 4 所有可能的组合为: (1, ...
- 深入理解 Vuejs 组件
本文主要归纳在 Vuejs 学习过程中对于 Vuejs 组件的各个相关要点.由于本人水平有限,如文中出现错误请多多包涵并指正,感谢.如果需要看更清晰的代码高亮,请跳转至我的个人站点的 深入理解 Vue ...
- vue 与jq 的对比
vue.react和angular,众所周知,他们是前端框架的3个大佬.这篇主要想对比一下用vue和用jq的区别,至于和其他框架的对比,我想vue的官网说的更为详细. 我算是独自用vue写过一个小型项 ...
- C语言链接数据库
一.解释一下函数功能和用法 1.mysql_real_connect 函数原型:MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, co ...
- spring boot 中文乱码问题
在刚接触spring boot 2.0的时候,遇到了一些中文乱码的问题,网上找了一些解决方法. 这里自己做个汇总. 在application.properties文件中添加: spring.http. ...
- java常见的异常类型
Exception分为两类:非运行是异常和运行时异常. java编译器要求方法必须声明抛出可能发生的非运行时异常,但是并不要求必须声明抛出未被捕获的运行时异常.A:NullPointerExcepti ...