Spark streaming技术内幕6 : Job动态生成原理与源码解析
原创文章,转载请注明:转载自 周岳飞博客(http://www.cnblogs.com/zhouyf/)


try {
validate()
// Start the streaming scheduler in a new thread, so that thread local properties
// like call sites and job groups can be reset without affecting those of the
// current thread.
ThreadUtils.runInNewThread("streaming-start") {
sparkContext.setCallSite(startSite.get)
sparkContext.clearJobGroup()
sparkContext.setLocalProperty(SparkContext.SPARK_JOB_INTERRUPT_ON_CANCEL, "false")
savedProperties.set(SerializationUtils.clone(
sparkContext.localProperties.get()).asInstanceOf[Properties])
scheduler.start()
}
state = StreamingContextState.ACTIVE
} catch {
case NonFatal(e) =>
logError("Error starting the context, marking it as stopped", e)
scheduler.stop(false)
state = StreamingContextState.STOPPED
throw e
}
eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)
override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
}
eventLoop.start()
// attach rate controllers of input streams to receive batch completion updates
for {
inputDStream <- ssc.graph.getInputStreams
rateController <- inputDStream.rateController
} ssc.addStreamingListener(rateController)
listenerBus.start()
receiverTracker = new ReceiverTracker(ssc)
inputInfoTracker = new InputInfoTracker(ssc)
executorAllocationManager = ExecutorAllocationManager.createIfEnabled(
ssc.sparkContext,
receiverTracker,
ssc.conf,
ssc.graph.batchDuration.milliseconds,
clock)
executorAllocationManager.foreach(ssc.addStreamingListener)
receiverTracker.start()
jobGenerator.start()
executorAllocationManager.foreach(_.start())
logInfo("Started JobScheduler")
private def processEvent(event: JobSchedulerEvent) {
try {
event match {
case JobStarted(job, startTime) => handleJobStart(job, startTime)
case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)
case ErrorReported(m, e) => handleError(m, e)
}
} catch {
case e: Throwable =>
reportError("Error in job scheduler", e)
}
}
/** Start generation of jobs */
def start(): Unit = synchronized {
if (eventLoop != null) return // generator has already been started // Call checkpointWriter here to initialize it before eventLoop uses it to avoid a deadlock.
// See SPARK-10125
checkpointWriter eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event) override protected def onError(e: Throwable): Unit = {
jobScheduler.reportError("Error in job generator", e)
}
}
eventLoop.start() if (ssc.isCheckpointPresent) {
restart()
} else {
startFirstTime()
}
}

/** Generate jobs and perform checkpoint for the given `time`. */
private def generateJobs(time: Time) {
// Checkpoint all RDDs marked for checkpointing to ensure their lineages are
// truncated periodically. Otherwise, we may run into stack overflows (SPARK-6847).
ssc.sparkContext.setLocalProperty(RDD.CHECKPOINT_ALL_MARKED_ANCESTORS, "true")
Try {
jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batch
graph.generateJobs(time) // generate jobs using allocated block
} match {
case Success(jobs) =>
val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time)
jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false))
}
def generateJobs(time: Time): Seq[Job] = {
logDebug("Generating jobs for time " + time)
val jobs = this.synchronized {
outputStreams.flatMap { outputStream =>
val jobOption = outputStream.generateJob(time)
jobOption.foreach(_.setCallSite(outputStream.creationSite))
jobOption
}
}
logDebug("Generated " + jobs.length + " jobs for time " + time)
jobs
}
override def generateJob(time: Time): Option[Job] = {
parent.getOrCompute(time) match {
case Some(rdd) =>
val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
foreachFunc(rdd, time)
}
Some(new Job(time, jobFunc))
case None => None
}
}
def submitJobSet(jobSet: JobSet) {
if (jobSet.jobs.isEmpty) {
logInfo("No jobs added for time " + jobSet.time)
} else {
listenerBus.post(StreamingListenerBatchSubmitted(jobSet.toBatchInfo))
jobSets.put(jobSet.time, jobSet)
jobSet.jobs.foreach(job => jobExecutor.execute(new JobHandler(job)))
logInfo("Added jobs for time " + jobSet.time)
}
}
Spark streaming技术内幕6 : Job动态生成原理与源码解析的更多相关文章
- 6.Spark streaming技术内幕 : Job动态生成原理与源码解析
原创文章,转载请注明:转载自 周岳飞博客(http://www.cnblogs.com/zhouyf/) Spark streaming 程序的运行过程是将DStream的操作转化成RDD的操作, ...
- 7.spark Streaming 技术内幕 : 从DSteam到RDD全过程解析
原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/) 上篇博客讨论了Spark Streaming 程序动态生成Job的过程,并留下一个疑问: ...
- 9. Spark Streaming技术内幕 : Receiver在Driver的精妙实现全生命周期彻底研究和思考
原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/) Spark streaming 程序需要不断接收新数据,然后进行业务逻辑 ...
- JDK1.8 动态代理机制及源码解析
动态代理 a) jdk 动态代理 Proxy, 核心思想:通过实现被代理类的所有接口,生成一个字节码文件后构造一个代理对象,通过持有反射构造被代理类的一个实例,再通过invoke反射调用被代理类实例的 ...
- spark streaming之三 rdd,job的动态生成以及动态调度
前面一篇讲到了,DAG静态模板的生成.那么spark streaming会在每一个batch时间一到,就会根据DAG所形成的逻辑以及物理依赖链(dependencies)动态生成RDD以及由这些RDD ...
- [源码解析] 深度学习分布式训练框架 horovod (9) --- 启动 on spark
[源码解析] 深度学习分布式训练框架 horovod (9) --- 启动 on spark 目录 [源码解析] 深度学习分布式训练框架 horovod (9) --- 启动 on spark 0x0 ...
- 贯通Spark Streaming JobScheduler内幕实现和深入思考
本节主要内容: 一.SparkStreaming Job生成深度思考 二.SparkStreaming Job生成源码解析 JobScheduler的地位非常的重要,所有的关键都在JobSchedul ...
- Spark Streaming运行流程及源码解析(一)
本系列主要描述Spark Streaming的运行流程,然后对每个流程的源码分别进行解析 之前总听同事说Spark源码有多么棒,咱也不知道,就是疯狂点头.今天也来撸一下Spark源码. 对Spark的 ...
- Scala 深入浅出实战经典 第65讲:Scala中隐式转换内幕揭秘、最佳实践及其在Spark中的应用源码解析
王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...
随机推荐
- C#学习之泛型准备
想要把泛型搞明白,最好先弄明白下面的代码实例 本实例是建立了两个类,然后在类中可以添加任意类型的值,并且可以利用foreach语句读出 //第一个节点类,放在一个文件中 using System; u ...
- HDU3579 线性同余方程(模板 余数不一定互质)
Hello Kiki Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- vs报错“以下文件中的行尾不一致,是否将行尾标准化”
vs报错"以下文件中的行尾不一致,是否将行尾标准化" 分析: 通过读取源文件,发现换行都使用的是"\n" Windows和Unix不同的标准引起的...即& ...
- C11简洁之道:函数绑定
1. 可调用对象 在C++中,有“可调用对象”这么个概念,那么什么是调用对象呢?有哪些情况?我们来看看: 函数指针: 具有operator()成员函数的类对象(仿函数): 可以被转换为函数指针的类对 ...
- Ubuntu12.04 GIT安装和使用
一.安装GIT和配置GIT 1.安装GIT apt-get install git 2.配置GIT ##配置用户信息 git config --global user.name "John ...
- iOS排序
NSArray *originalArray = @[@,@,@,@,@]; //block比较方法,数组中可以是NSInteger,NSString(需要转换) NSComparator finde ...
- 「6月雅礼集训 2017 Day11」delight
[题目大意] 有$n$天,每天能吃饭.睡觉.什么事也不干 每天吃饭的愉悦值为$e_i$,睡觉的愉悦值为$s_i$,什么都不干愉悦值为0. 要求每连续$k$天都要有至少$E$天吃饭,$S$天睡觉. 求最 ...
- Vue 键盘事件
Vue2键盘事件:keydown/keyup... 1.使用 <!DOCTYPE html> <html> <head> <title></tit ...
- node.js 开发命令行工具 发布npm包
新建一个文件夹“nodecmd”: 在nodecmd下新建文件夹bin: 在bin文件夹下新建JavaScript文件hello.js #!/usr/bin/env node console.log( ...
- H5特性 MutationObserver 监听元素 动态改变iframe高度
这些代码要写在iframe页中执行 <script type="text/javascript"> $(function () { // Firefox和Chrome早 ...