add by zhj:

关系数据库表的一条记录可以映射成Redis中的一个hash类型,其实数据库记录本来就是键值对。这样,要比本文中的键设计用更少的键,更节省内存,因为每个键除了它的键值占用内存外,还额外占用一定的内存。

原文:http://www.hoterran.info/redis_kv_design

丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。

下面举一些常见适合kv数据库的例子来谈谈键值的设计,并与关系型数据库做一个对比,发现关系型的不足之处。

用户登录系统

记录用户登录信息的一个系统, 我们简化业务后只留下一张表。

关系型数据库的设计

mysql> select * from login;
+---------+----------------+-------------+---------------------+
| user_id | name           | login_times | last_login_time     |
+---------+----------------+-------------+---------------------+
|       1 | ken thompson   |           5 | 2011-01-01 00:00:00 |
|       2 | dennis ritchie |           1 | 2011-02-01 00:00:00 |
|       3 | Joe Armstrong  |           2 | 2011-03-01 00:00:00 |
+---------+----------------+-------------+---------------------+

user_id表的主键,name表示用户名,login_times表示该用户的登录次数,每次用户登录后,login_times会自增,而last_login_time更新为当前时间。

REDIS的设计

关系型数据转化为KV数据库,我的方法如下:

key 表名:主键值:列名

value 列值

一般使用冒号做分割符,这是不成文的规矩。比如在php-admin for redis系统里,就是默认以冒号分割,于是user:1 user:2等key会分成一组。于是以上的关系数据转化成kv数据后记录如下:

Set login:1:login_times 5
Set login:2:login_times 1
Set login:3:login_times 2 Set login:1:last_login_time 2011-1-1
Set login:2:last_login_time 2011-2-1
Set login:3:last_login_time 2011-3-1 set login:1:name ”ken thompson“
set login:2:name “dennis ritchie”
set login:3:name ”Joe Armstrong“

这样在已知主键的情况下,通过get、set就可以获得或者修改用户的登录次数和最后登录时间和姓名。

一般用户是无法知道自己的id的,只知道自己的用户名,所以还必须有一个从name到id的映射关系,这里的设计与上面的有所不同。

set "login:ken thompson:id"      1
set "login:dennis ritchie:id" 2
set "login: Joe Armstrong:id" 3

这样每次用户登录的时候业务逻辑如下(python版),r是redis对象,name是已经获知的用户名。

#获得用户的id
uid = r.get("login:%s:id" % name)
#自增用户的登录次数
ret = r.incr("login:%s:login_times" % uid)
#更新该用户的最后登录时间
ret = r.set("login:%s:last_login_time" % uid, datetime.datetime.now())

如果需求仅仅是已知id,更新或者获取某个用户的最后登录时间,登录次数,关系型和kv数据库无啥区别。一个通过btree pk,一个通过hash,效果都很好。

假设有如下需求,查找最近登录的N个用户。开发人员看看,还是比较简单的,一个sql搞定。

select * from login order by last_login_time desc limit N

DBA了解需求后,考虑到以后表如果比较大,所以在last_login_time上建个索引。执行计划从索引leafblock 的最右边开始访问N条记录,再回表N次,效果很好。

过了两天,又来一个需求,需要知道登录次数最多的人是谁。同样的关系型如何处理?DEV说简单

select * from login order by login_times desc limit N

DBA一看,又要在login_time上建立一个索引。有没有觉得有点问题呢,表上每个字段上都有素引。

关系型数据库的数据存储的的不灵活是问题的源头,数据仅有一种储存方法,那就是按行排列的堆表。统一的数据结构意味着你必须使用索引来改变sql的访问路径来快速访问某个列的,而访问路径的增加又意味着你必须使用统计信息来辅助,于是一大堆的问题就出现了。

没有索引,没有统计计划,没有执行计划,这就是kv数据库。

redis里如何满足以上的需求呢? 对于求最新的N条数据的需求,链表的后进后出的特点非常适合。我们在上面的登录代码之后添加一段代码,维护一个登录的链表,控制他的长度,使得里面永远保存的是最近的N个登录用户。

#把当前登录人添加到链表里
ret = r.lpush("login:last_login_times", uid)
#保持链表只有N位
ret = redis.ltrim("login:last_login_times", 0, N-1)

这样需要获得最新登录人的id,如下的代码即可

last_login_list = r.lrange("login:last_login_times", 0, N-1)

另外,求登录次数最多的人,对于排序,积分榜这类需求,sorted set非常的适合,我们把用户和登录次数统一存储在一个sorted set里。

zadd login:login_times 5 1
zadd login:login_times 1 2
zadd login:login_times 2 3

这样假如某个用户登录,额外维护一个sorted set,代码如此

#对该用户的登录次数自增1
ret = r.zincrby("login:login_times", 1, uid)

那么如何获得登录次数最多的用户呢,逆序排列取的排名第N的用户即可

ret = r.zrevrange("login:login_times", 0, N-1)

可以看出,DEV需要添加2行代码,而DBA不需要考虑索引什么的。

TAG系统

tag在互联网应用里尤其多见,如果以传统的关系型数据库来设计有点不伦不类。我们以查找书的例子来看看redis在这方面的优势。

关系型数据库的设计

两张表,一张book的明细,一张tag表,表示每本的tag,一本书存在多个tag。

mysql> select * from book;
+------+-------------------------------+----------------+
| id | name | author |
+------+-------------------------------+----------------+
| 1 | The Ruby Programming Language | Mark Pilgrim |
| 1 | Ruby on rail | David Flanagan |
| 1 | Programming Erlang | Joe Armstrong |
+------+-------------------------------+----------------+ mysql> select * from tag;
+---------+---------+
| tagname | book_id |
+---------+---------+
| ruby | 1 |
| ruby | 2 |
| web | 2 |
| erlang | 3 |
+---------+---------+ 假如有如此需求,查找即是ruby又是web方面的书籍,如果以关系型数据库会怎么处理?
select b.name, b.author  from tag t1, tag t2, book b
where t1.tagname = 'web' and t2.tagname = 'ruby' and t1.book_id = t2.book_id and b.id = t1.book_id

tag表自关联2次再与book关联,这个sql还是比较复杂的,如果要求即ruby,但不是web方面的书籍呢?

关系型数据其实并不太适合这些集合操作。

REDIS的设计

首先book的数据肯定要存储的,和上面一样。

set book:1:name    ”The Ruby Programming Language”
Set book:2:name ”Ruby on rail”
Set book:3:name ”Programming Erlang” set book:1:author ”Mark Pilgrim”
Set book:2:author ”David Flanagan”
Set book:3:author ”Joe Armstrong”

tag表我们使用集合来存储数据,因为集合擅长求交集、并集

sadd tag:ruby 1
sadd tag:ruby 2
sadd tag:web 2
sadd tag:erlang 3

那么,即属于ruby又属于web的书?

inter_list = redis.sinter("tag.web", "tag:ruby")

即属于ruby,但不属于web的书?

inter_list = redis.sdiff("tag.ruby", "tag:web")

属于ruby和属于web的书的合集?

inter_list = redis.sunion("tag.ruby", "tag:web")

简单到不行阿。

从以上2个例子可以看出在某些场景里,关系型数据库是不太适合的,你可能能够设计出满足需求的系统,但总是感觉的怪怪的,有种生搬硬套的感觉。

尤其登录系统这个例子,频繁的为业务建立索引。放在一个复杂的系统里,ddl(创建索引)有可能改变执行计划。导致其它的sql采用不同的执行计划,业务复杂的老系统,这个问题是很难预估的,sql千奇百怪。要求DBA对这个系统里所有的sql都了解,这点太难了。这个问题在oracle里尤其严重,每个DBA估计都碰到过。对于MySQL这类系统,ddl又不方便(虽然现在有online ddl的方法)。碰到大表,DBA凌晨爬起来在业务低峰期操作,这事我没少干过。而这种需求放到redis里就很好处理,DBA仅仅对容量进行预估即可。

未来的OLTP系统应该是kv和关系型的紧密结合。

浅谈REDIS数据库的键值设计(转)的更多相关文章

  1. 浅谈Redis数据库的键值设计(转)

    丰富的数据结构使得redis的设计非常的有趣.不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与.redis的DBA需要熟悉 ...

  2. Python 基于python+mysql浅谈redis缓存设计与数据库关联数据处理

    基于python+mysql浅谈redis缓存设计与数据库关联数据处理 by:授客  QQ:1033553122 测试环境 redis-3.0.7 CentOS 6.5-x86_64 python 3 ...

  3. $.ajax()方法详解 ajax之async属性 【原创】详细案例解剖——浅谈Redis缓存的常用5种方式(String,Hash,List,set,SetSorted )

    $.ajax()方法详解   jquery中的ajax方法参数总是记不住,这里记录一下. 1.url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. 2.type: 要求为Str ...

  4. 浅谈Redis面试热点之工程架构篇[1]

    前言 前面用两篇文章大致介绍了Redis热点面试中的底层实现相关的问题,感兴趣的可以回顾一下:[决战西二旗]|Redis面试热点之底层实现篇[决战西二旗]|Redis面试热点之底层实现篇(续) 接下来 ...

  5. Redis中的键值过期操作

    1.过期设置 Redis 中设置过期时间主要通过以下四种方式: expire key seconds:设置 key 在 n 秒后过期: pexpire key milliseconds:设置 key ...

  6. Redis键值设计(转载)

    参考资料:https://blog.csdn.net/iloveyin/article/details/7105181 丰富的数据结构使得redis的设计非常的有趣.不像关系型数据库那样,DEV和DB ...

  7. (转)运维角度浅谈MySQL数据库优化

    转自:http://lizhenliang.blog.51cto.com/7876557/1657465 一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架 ...

  8. 运维角度浅谈MySQL数据库优化(转)

    一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善.这篇博文主要谈MySQL数据库发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分 ...

  9. 从运维角度浅谈 MySQL 数据库优化

    一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善.这篇博文主要谈MySQL数据库发展周期中所面临的问题及优化方案,暂且抛开前端应用不说,大致分 ...

随机推荐

  1. [css]后台管理系统布局

    知识点: 绝对定位+overflowhidden 整体思路 三大块 pg-header---需要固定 (height:48px) pg-content menu 右侧菜单-需要固定(width:200 ...

  2. Mysql bin-log日志文件处理

    当MySQL开启bin-log选项后,会不停的记录bin-log,但是几天前的日志肯定就没用了或者可以备份到别处,那么如何正确的处理这些日志呢 参考一下几篇文章 MySQL mysql-bin log ...

  3. oracle表空间中PCTFREE, PCTUSED, INITRANS, MAXTRANX参数的解释

    1. PCTFREE 要形容一个 BLOCK 的运作,我们可以把一个 BLOCK 想成一个水杯.侍者把水倒入放在我们面前的水杯,要多满呢,我们要求他倒 9 分满好了,这时候 PCTFREE 代表着设定 ...

  4. 使用uGUI系统玩转标准俄罗斯方块

    使用uGUI系统玩转标准俄罗斯方块 笔者使用的Unity3D版本是4.6b17.由于一些工作上的一些事情导致制作的进度被严重滞后.笔者实际用于开发俄罗斯方块的时间,大概也就2-3天吧. 开始前的准备 ...

  5. lua语言介绍

    什么是Lua Lua是一个小巧的脚本语言. 是巴西里约热内卢天主教大学(Pontifical Catholic University of Rio de Janeiro)里的一个研究小组,由Rober ...

  6. linux常用指令--防火墙

    centos7 iptables :  如果你想使用iptables静态路由规则,那么就禁用centos7默认的firewalld,并安装ipteables-services, 启用iptables和 ...

  7. 剖析top命令显示的VIRT RES SHR值

    http://yalung929.blog.163.com/blog/static/203898225201212981731971/ http://www.fuzhijie.me/?p=741 引  ...

  8. jQuery实现浮动层跟随页面滚动效果

      helloweba.com Author:月光光 Time:2010-11-29 09:02 Tag: jquery  滚动 在本文中,我将介绍一个可以跟随页面滚动的层效果,当用户滚动鼠标滚轮或者 ...

  9. Json.net操作json

    string str="{\"size\":15,\"query\":{\"match\":{\"data.query. ...

  10. ChemDraw 15.1 Pro插入阿尔法可以这样做

    在理工科学科学习过程中,大家都会遇到各种希腊字母,而阿尔法(α)又是最常见的一个.最新版本ChemDraw 15.1 Pro的功能更加卓越,在很多功能上都进行了优化,操作更简便.其中,就可以很好的在公 ...