全然背包问题 代码(C)

本文地址: http://blog.csdn.net/caroline_wendy

题目: 有n个重量和价值分别为w,v的物品, 从这些物品中挑选出总重量不超过W的物品, 求全部挑选方案中价值总和的最大值. 

*每件物品能够挑选随意多件.

动态规划: 每次选取最大的组合, 增加到数组, 第一种时间复杂度O(nW^2), 另外一种时间复杂度O(nW).

解法1, max()部分表明, 要么来源于上面, 要么来源于前面.

代码:

/*
* main.cpp
*
* Created on: 2014.7.17
* Author: spike
*/ /*eclipse cdt, gcc 4.8.1*/ #include <stdio.h>
#include <memory.h>
#include <limits.h> #include <utility>
#include <queue>
#include <algorithm> using namespace std; class Program {
static const int MAX_N = 100; int n=4, W=5;
int w[MAX_N] = {2,1,3,2}, v[MAX_N]={3,2,4,2};
int dp[MAX_N+1][MAX_N+1];
public:
void solve() {
for (int i=0; i<n; ++i) {
for (int j=0; j<=W; j++) {
for (int k=0; k*w[i] <= j; k++) {
dp[i+1][j] = max(dp[i+1][j], dp[i][j-k*w[i]]+k*v[i]);
}
}
}
printf("result = %d\n", dp[n][W]);
} void solve1() {
for (int i=0; i<n; ++i) {
for (int j=0; j<=W; j++) {
if (j<w[i]) {
dp[i+1][j] = dp[i][j];
} else {
dp[i+1][j] = max(dp[i][j], dp[i+1][j-w[i]]+v[i]);
}
}
}
printf("result = %d\n", dp[n][W]);
}
}; int main(void)
{
Program P;
P.solve1();
return 0;
}

输出:

result = 10

为了节约内存, 能够使用一维数组进行求解.

代码:

/*
* main.cpp
*
* Created on: 2014.7.17
* Author: spike
*/ /*eclipse cdt, gcc 4.8.1*/ #include <stdio.h>
#include <memory.h>
#include <limits.h> #include <utility>
#include <queue>
#include <algorithm> using namespace std; class Program {
static const int MAX_N = 100; int n=3, W=7;
int w[MAX_N] = {3,4,2}, v[MAX_N]={4,5,3};
int dp[MAX_N+1];
public:
void solve() {
memset(dp, 0, sizeof(dp));
for (int i=0; i<n; ++i) {
for (int j=w[i]; j<=W; j++) {
dp[j] = max(dp[j], dp[j-w[i]]+v[i]);
}
}
printf("result = %d\n", dp[W]);
}
}; int main(void)
{
Program P;
P.solve();
return 0;
}

输出:

result = 10

能够讲两个数组滚动使用, 节省内存.

代码:

/*
* main.cpp
*
* Created on: 2014.7.17
* Author: spike
*/ /*eclipse cdt, gcc 4.8.1*/ #include <stdio.h>
#include <memory.h>
#include <limits.h> #include <utility>
#include <queue>
#include <algorithm> using namespace std; class Program {
static const int MAX_N = 100; int n=3, W=7;
int w[MAX_N] = {3,4,2}, v[MAX_N]={4,5,3};
int dp[2][MAX_N+1];
public:
void solve() {
memset(dp,0,sizeof(dp));
for (int i=0; i<n; ++i) {
for (int j=0; j<=W; j++) {
if (j<w[i]) {
dp[(i+1)&1][j] = dp[i&1][j];
} else {
dp[(i+1)&1][j] = max(dp[i&1][j], dp[(i+1)&1][j-w[i]]+v[i]);
}
}
}
printf("result = %d\n", dp[n&1][W]);
}
}; int main(void)
{
Program P;
P.solve();
return 0;
}

输出:

result = 10

重量可选范围非常大, 价值可选范围小的时候, 能够使依据价值进行动态规划.

代码:

/*
* main.cpp
*
* Created on: 2014.7.17
* Author: spike
*/ /*eclipse cdt, gcc 4.8.1*/ #include <stdio.h>
#include <memory.h>
#include <limits.h> #include <utility>
#include <queue>
#include <algorithm> using namespace std; class Program {
static const int MAX_N = 100;
static const int MAX_V = 4;
const int INF = INT_MAX>>2; int n=4, W=5;
int w[MAX_N] = {2,1,3,2}, v[MAX_N] = {3,2,4,2}; int dp[MAX_N+1][MAX_N*MAX_V+1];
public:
void solve() {
fill(dp[0], dp[0]+MAX_N*MAX_V+1, INF); dp[0][0] = 0;
for (int i=0; i<n; ++i) {
for (int j=0; j<=MAX_N*MAX_V; j++) {
if (j<v[i]) {
dp[i+1][j] = dp[i][j];
} else {
dp[i+1][j] = min(dp[i][j], dp[i][j-v[i]]+w[i]);
}
}
}
int res = 0;
for (int i=0; i<=MAX_N*MAX_V; ++i) if (dp[n][i]<=W) res = i;
printf("result = %d\n", res);
}
}; int main(void)
{
Program P;
P.solve();
return 0;
}

输出:

result = 7

编程算法 - 全然背包问题 代码(C)的更多相关文章

  1. 编程算法 - 字典分词 代码(C)

    字典分词 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 给定字典, 给定一句话, 进行分词. 使用深度遍历(DFS)的方法. 使用一个參数string ...

  2. 编程算法 - 分割数 代码(C)

    分割数 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 有n个无差别的物品, 将它们划分成不超过m组, 求出划分方法数模M的余数. 比如: n= ...

  3. 编程算法 - 数丑陋 代码(C)

    数丑陋 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 我们把仅仅包括因子2, 3 和 5的数称作丑数. 求按从小到大的顺序的第5个丑数. 能够 ...

  4. 编程算法 - 区间调度问题 代码(C)

    区间调度问题 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 有n项工作, 每项工作分别在s时间開始, 在t时间结束. 对于每项工作能够选择參与 ...

  5. 编程算法 - 切割排序 代码(C)

    切割排序 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 排序切割, 把一个数组分为, 大于k\小于k\等于k的三个部分. 能够使用高速排序的Parti ...

  6. 编程算法 - 二部图确定 代码(C)

    二部图确定 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定一个具有n个顶点的图. 要给图上每一个顶点染色, 而且要使相邻的顶点颜色不同.  ...

  7. 编程算法 - 远征队(expedition) 代码(C)

    远征队(expedition) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 远征队有一辆卡车须要行驶L单位的距离, 開始时, 车上有P单位的 ...

  8. 对一致性Hash算法,Java代码实现的深入研究

    一致性Hash算法 关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细解读一文中"一致性Hash算法"部分,对于为什么要使用一致性Hash算法.一致性 ...

  9. 游戏编程算法与技巧 Game Programming Algorithms and Techniques (Sanjay Madhav 著)

    http://gamealgorithms.net 第1章 游戏编程概述 (已看) 第2章 2D图形 (已看) 第3章 游戏中的线性代数 (已看) 第4章 3D图形 (已看) 第5章 游戏输入 (已看 ...

随机推荐

  1. dmesg命令应用

    昨晚上线服务的时候,看log偶然发现服务在启动半小时左右就会被supervise重新拉起,也没有core.通过重新启动的服务发现内存飙涨,且持续增加,怀疑是内存打满,进程被kill了. 其实怀疑是正确 ...

  2. centos单机安装Hadoop2.6

    一,安装环境 硬件:虚拟机 操作系统:Centos 6.4 64位 IP:10.51.121.10 主机名:datanode-4 安装用户:root 二,安装JDK 安装JDK1.6或者以上版本.这里 ...

  3. javascript不同类型数据之间的运算是如何转换的

    js中不同类型的基础数据之间可以转换,这种转换是有规则可寻的,并非随意的随机的.在js中有5种基础类型数据:string.number.boolean.null.undefined,其中,常用于计算或 ...

  4. Linux平台使用Freetds连接SQL Server服务器,兼容PHP和Laravel

    本文在CentOS 7 64bit和Laravel 4.2环境测试通过.   1.下载源码并解压缩 wget ftp://ftp.freetds.org/pub/freetds/stable/free ...

  5. linux—mysql安装步骤

    一.检查系统中是否已经安装过mysql. rpm -qa | grep mysql 如果存在,则需要删除. yum -y remove mysql* 继续检查一下是否还存在mysql rpm -qa ...

  6. Django - 安装wagtail

    感觉这个CMS系统不错,试用了一下,记录过程: 1. 安装Virtualenv mkdir wagtail virtualenv --no-site-packages --python=3.5 wag ...

  7. 第二百零四节,jQuery EasyUI,Dialog(对话框)组件

    jQuery EasyUI,Dialog(对话框)组件 学习要点: 1.加载方式 2.属性列表 3.事件列表 4.方法列表 本节课重点了解EasyUI中Dialog(窗口)组件的使用方法,这个组件依赖 ...

  8. 【tyvj】P2065 「Poetize10」封印一击(贪心+线段树/差分)

    http://new.tyvj.cn/p/2065 我就不说我很sb的用线段树来维护值...... 本机自测的时候想了老半天没想出怎么维护点在所有区间被多少区间包含的方法.最后一小时才想出来线段树(果 ...

  9. bash脚本IFS=',' read的意思

    IFS is the Input Field Separator, which means the string read will be split based on the characters ...

  10. kvm和qemu的关系

    KVM (Kernel Virtual Machine) is a Linux kernel module that allows a user space program to utilize th ...