【BZOJ】1656:[Usaco2006 Jan]The Grove 树木(bfs+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1656
神bfs!
我们知道,我们要绕这个联通的树林一圈。
那么,我们想,怎么才能让我们的bfs绕一个圈做bfs呢
我们可以这样:从联通的任意边界点引一条交边界的射线。
为什么呢?因为这样当我们的bfs到这条射线时,我们可以不向射线拓展!
可是我们考虑的是绕一个圈,那么我们要考虑从另一个放向到达射线的情况(即饶了一圈后到射线我们要考虑拓展)
这样我们就能保证绕了联通块一圈,然后是最短距离
具体细节看代码
- #include <cstdio>
- #include <cstring>
- #include <cmath>
- #include <string>
- #include <iostream>
- #include <algorithm>
- #include <queue>
- using namespace std;
- #define rep(i, n) for(int i=0; i<(n); ++i)
- #define for1(i,a,n) for(int i=(a);i<=(n);++i)
- #define for2(i,a,n) for(int i=(a);i<(n);++i)
- #define for3(i,a,n) for(int i=(a);i>=(n);--i)
- #define for4(i,a,n) for(int i=(a);i>(n);--i)
- #define CC(i,a) memset(i,a,sizeof(i))
- #define read(a) a=getint()
- #define print(a) printf("%d", a)
- #define dbg(x) cout << #x << " = " << x << endl
- #define printarr2(a, b, c) for1(i, 1, b) { for1(j, 1, c) cout << a[i][j] << '\t'; cout << endl; }
- #define printarr1(a, b) for1(i, 1, b) cout << a[i] << '\t'; cout << endl
- inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
- inline const int max(const int &a, const int &b) { return a>b?a:b; }
- inline const int min(const int &a, const int &b) { return a<b?a:b; }
- const int N=60, Q=N*N*10, dx[]={-1, 1, 0, 0, -1, 1, -1, 1}, dy[]={0, 0, -1, 1, -1, -1, 1, 1};
- int a[N][N], line[N][N], f[2][N][N], n, m, front, tail, flag, x, y, X, Y;
- struct dat { int x, y, f; }q[Q];
- int main() {
- read(n); read(m);
- for1(i, 1, n) for1(j, 1, m) {
- char ch=getchar(); while(ch!='.'&&ch!='X'&&ch!='*') ch=getchar();
- if(ch=='X') a[i][j]=1, x=i, y=j;
- else if(ch=='*') X=i, Y=j;
- }
- for1(i, 1, n) if(i+x<=n) line[i+x][y]=1; else break;
- q[tail].x=X, q[tail].y=Y, q[tail++].f=0;
- while(front!=tail) {
- dat &t=q[front++]; if(front==Q) front=0;
- x=t.x, y=t.y, flag=t.f;
- rep(i, 8) {
- int fx=dx[i]+x, fy=dy[i]+y;
- if(fx<0 || fy<0 || fx>n || fy>m || a[fx][fy]) continue;
- if((line[x][y] || line[fx][fy]) && fy<=y) continue; //当前在射线上或下一个点是射线上时(即从右向左),不能向左拓展
- if(line[fx][fy] && !f[1][fx][fy]) { //当这是从射线左边向射线过来时,更新上的点
- f[1][fx][fy]=f[flag][x][y]+1;
- q[tail].x=fx, q[tail].y=fy, q[tail++].f=1; if(tail==Q) tail=0;
- }
- else if(!f[flag][fx][fy]) { //继承饶了一圈后的距离向四周拓展
- f[flag][fx][fy]=f[flag][x][y]+1;
- q[tail].x=fx, q[tail].y=fy, q[tail++].f=flag; if(tail==Q) tail=0;
- }
- }
- }
- print(f[1][X][Y]);
- return 0;
- }
Description
The pasture contains a small, contiguous grove of trees that has no 'holes' in the middle of the it. Bessie wonders: how far is it to walk around that grove and get back to my starting position? She's just sure there is a way to do it by going from her start location to successive locations by walking horizontally, vertically, or diagonally and counting each move as a single step. Just looking at it, she doesn't think you could pass 'through' the grove on a tricky diagonal. Your job is to calculate the minimum number of steps she must take. Happily, Bessie lives on a simple world where the pasture is represented by a grid with R rows and C columns (1 <= R <= 50, 1 <= C <= 50). Here's a typical example where '.' is pasture (which Bessie may traverse), 'X' is the grove of trees, '*' represents Bessie's start and end position, and '+' marks one shortest path she can walk to circumnavigate the grove (i.e., the answer): ...+... ..+X+.. .+XXX+. ..+XXX+ ..+X..+ ...+++* The path shown is not the only possible shortest path; Bessie might have taken a diagonal step from her start position and achieved a similar length solution. Bessie is happy that she's starting 'outside' the grove instead of in a sort of 'harbor' that could complicate finding the best path.

Input
* Line 1: Two space-separated integers: R and C
* Lines 2..R+1: Line i+1 describes row i with C characters (with no spaces between them).
Output
* Line 1: The single line contains a single integer which is the smallest number of steps required to circumnavigate the grove.
Sample Input
.......
...X...
..XXX..
...XXX.
...X...
......*
Sample Output
【BZOJ】1656:[Usaco2006 Jan]The Grove 树木(bfs+特殊的技巧)的更多相关文章
- BZOJ 1656 [Usaco2006 Jan] The Grove 树木:bfs【射线法】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1656 题意: 给你一个n*m的地图,'.'表示空地,'X'表示树林,'*'表示起点. 所有 ...
- bzoj:1656 [Usaco2006 Jan] The Grove 树木
Description The pasture contains a small, contiguous grove of trees that has no 'holes' in the middl ...
- bzoj1656: [Usaco2006 Jan] The Grove 树木 (bfs+新姿势)
题目大意:一个n*m的图中,“.”可走,“X”不可走,“*”为起点,问从起点开始绕所有X一圈回到起点最少需要走多少步. 一开始看到这题,自己脑洞了下怎么写,应该是可过,然后跑去看了题解,又学会了一 ...
- 【BZOJ-1656】The Grove 树木 BFS + 射线法
1656: [Usaco2006 Jan] The Grove 树木 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 186 Solved: 118[Su ...
- BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径( tarjan )
tarjan求边双连通分量, 然后就是一棵树了, 可以各种乱搞... ----------------------------------------------------------------- ...
- bzoj 1654: [Usaco2006 Jan]The Cow Prom 奶牛舞会 -- Tarjan
1654: [Usaco2006 Jan]The Cow Prom 奶牛舞会 Time Limit: 5 Sec Memory Limit: 64 MB Description The N (2 & ...
- BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径
Description 给出一个无向图,求将他构造成双连通图所需加的最少边数. Sol Tarjan求割边+缩点. 求出割边,然后缩点. 将双连通分量缩成一个点,然后重建图,建出来的就是一棵树,因为每 ...
- bzoj:1654 [Usaco2006 Jan]The Cow Prom 奶牛舞会
Description The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in ...
- BZOJ——1720: [Usaco2006 Jan]Corral the Cows 奶牛围栏
http://www.lydsy.com/JudgeOnline/problem.php?id=1720 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1 ...
随机推荐
- Android 自定义数字加减器
该自定义View主要是实现一款效果不错的数字加减器的功能的,但是也可以自定义选择器的外观颜色等. 1.自定义View的布局(add_sub_view.xml) <?xml version=&qu ...
- 微信小程序自定义分享图片
自定义分享图片 onShareAppMessage: (res) => { if (res.from === 'button') { console.log("来自页面内转发按钮&qu ...
- iNode协议再次分析
iNode协议再次分析 声明: 1)本报告由博客园bitpeach撰写,版权所有,免费转载,请注明出处,并请勿作商业用途. 2)若本文档内有侵权文字或图片等内容,请联系作者bitpeach删除相应部分 ...
- 苹果通知推送服务(APNS)关键特性摘要
1. If APNs attempts to deliver a notification but the device is offline, the notification is stored ...
- SQLiteDatabase 源码
/** * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Vers ...
- JavaScript | 模拟文件拖选框样式 v1.0
————————————————————————————————————————————————————————— 文件拖选v1.0 图片不清楚时请右键点击"在新链接中打开图片" ...
- 动态创建 Log4net 实例
动态创建log4net 实例 根据业务类型,动态的创建日志实例,将日志写到不同目录.常见的配置文件中统一配置,不能满足需求. 引用log4net nuget安装命令: Install-Package ...
- 两种方法一句代码隐藏Activity的标题栏
把Activity的标题栏隐藏有两种方法.一种是在在Activity里面设置javacode.还有一种是在项目的清单文件AndroidManifest.xml中设置模版样式. 一.在Activity中 ...
- Wpf 自定义控件(1)
1. 新建一个wpf工程,在工程下面新建 一个文件夹themes,在themes下新建两个资源字典文件generic.xaml和PrettySeekBar.xaml generic.xaml ...
- WCF基础教程——vs2013创建wcf应用程序
引言 近期在项目中见到了师哥们常常谈到的WCF这方面的知识.当时在写程序的时候也没有理解wcf究竟是个什么东西? 以及我们为什么在项目中会採用这种框架来实现,仅仅是依照师哥他们写好的代码编写同样格 ...