基本概念

LCA:树上的最近公共祖先,对于有根树T的两个结点u、v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u、v的祖先且x的深度尽可能大。

RMQ:区间最小值查询问题。对于长度为n的数列A,回答若干询问RMQ(A,i,j),返回数列A中下标在[i,j]里的最小值下标。

朴素LCA算法

求出树上每个结点的深度。

对于查询LCA(u,v),用p1、p2指向将u、v,将p1、p2中深度较大的结点不断指向其父结点,直到p1、p2深度相同。

之后p1、p2同步向上移动,直到p1=p2,此时p1、p2所指向的结点就是LCA(u,v)。

LCA向RMQ转化

对有根树进行DFS,将遍历到的结点按顺序记录下来,将会得到一个长度为2N-1的序列,称之为T的欧拉序列F。

每个结点都在欧拉序列中出现,记录结点u在欧拉序列中第一次出现的位置为pos[u]。

记录结点u的深度为dep[u],在深度序列中记录欧拉序列中的结点的深度B[1...2N-1]。

根据DFS的性质,对于两结点u、v,从pos[u]遍历到pos[v]的过程中会经过LCA[u,v],它的深度是深度序列B[pos[u]...pos[v]]中最小的。

那么求LCA(T,u,v),就等价于求RMQ(B,u,v)。

LCA的Tarjan算法

解决LCA问题的Tarjan算法利用并查集在一次DFS(深度优先遍历)中完成所有询问。它是时间复杂度为O(N+Q)的离线算法,这里的Q表示查询次数。

算法DFS有根树T,定义从根节点到当前正在遍历的结点u的路径为活跃路径P。

对于每个已经遍历过的结点x,我们使用并查集将其连接到P上距离其最近的结点F(x)。

记录与u有关的询问集合为Q(u)。

对于Q(u)中的任意一组询问LCA(u, v),如果v已经遍历过,那么答案即为F(v)。

我们只需要维护当前所有以遍历结点的F即可。

代码流程Tarjan_DFS(u):

  1. 创建并查集u
  2. 遍历Q(u)中的所有询问(u,v),如果v已经被标记,则Answer(u,v)=v所在集合的根。
  3. 对于u的每一个儿子v,调用Tarjan_DFS(v)。合并u与v所在的集合,设根为u。
  4. 标记u。

倍增LCA

与RMQ的ST算法类似,我们令F[i][0]为结点i的第2k个父结点。

则F[i][0]为i的父结点,令w为i的第2k-1个父结点即w=F[i][k-1],那么w的第2k-1个父结点就是i的第2k个父结点即F[i][k]=F[w][k-1]。

在查询LCA时,与朴素LCA类似,先将深度较大的结点u提升到与v的深度相同,而这一次我们利用倍增法,一次提升2k个父结点,加快了算法的效率。

之后,两个结点同时提高2k(k是使2k<=dep[u]最大的正整数)。直到u、v到达同一个结点。那么这个结点就是LCA(u,v)。

倍增法的优点在于,除了能求出LCA(u,v),还可以对树上的路径进行维护。

例如要求出结点u到结点v路径上最大的边权w,我们可以在预处理F[i][k]时,用一个数组maxCost[i][k]记录结点i到它的第2k个父结点的路径上最大的边权。

那么在查询LCA(u,v)的过程中,求出u、v到公共祖先的路径上的最大边权,即u到v的路径上的最大边权。

 void preprocess(){
for (int i=;i<=n;i++){
anc[i][]=fa[i];
maxCost[i][]=cost[i];
for (int j=;(<<j)<n;j++) anc[i][j]=-;
}
for (int j=;(<<j)<n;j++){
for (int i=;i<=n;i++){
if (anc[i][j-]!=-){
int a=anc[i][j-];
anc[i][j]=anc[a][j-];
maxCost[i][j]=max(maxCost[i][j-],maxCost[a][j-]);
}
}
}
}
int query(int p,int q){
int log;
if (L[p]<L[q]) swap(p,q);
for (log=;(<<log)<=L[p];log++);log--;
int ans=-INF;
for (int i=log;i>=;i--){
if (L[p]-(<<i)>=L[q]){
ans=max(ans,maxCost[p][i]);
p=anc[p][i];
}
}
if (p==q) return ans;
for (int i=log;i>=;i--){
if (anc[p][i]!=-&&anc[p][i]!=anc[q][i]){
ans=max(ans,maxCost[p][i]);
p=anc[p][i];
ans=max(ans,maxCost[q][i]);
q=anc[q][i];
}
}
ans=max(ans,cost[p]);
ans=max(ans,cost[q]);
return ans;
}

倍增LCA

LCA问题的更多相关文章

  1. BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]

    3083: 遥远的国度 Time Limit: 10 Sec  Memory Limit: 1280 MBSubmit: 3127  Solved: 795[Submit][Status][Discu ...

  2. BZOJ 3626: [LNOI2014]LCA [树链剖分 离线|主席树]

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2050  Solved: 817[Submit][Status ...

  3. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  4. [bzoj2588][count on a tree] (主席树+lca)

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  5. [板子]倍增LCA

    倍增LCA板子,没有压行,可读性应该还可以.转载请随意. #include <cstdio> #include <cstring> #include <algorithm ...

  6. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  7. [bzoj3626][LNOI2014]LCA

    Description 给出一个$n$个节点的有根树(编号为$0$到$n-1$,根节点为$0$). 一个点的深度定义为这个节点到根的距离$+1$. 设$dep[i]$表示点$i$的深度,$lca(i, ...

  8. (RMQ版)LCA注意要点

    inline int lca(int x,int y){ if(x>y) swap(x,y); ]][x]]<h[rmq[log[y-x+]][y-near[y-x+]+]])? rmq[ ...

  9. bzoj3631: [JLOI2014]松鼠的新家(LCA+差分)

    题目大意:一棵树,以一定顺序走完n个点,求每个点经过多少遍 可以树链剖分,也可以直接在树上做差分序列的标记 后者打起来更舒适一点.. 具体实现: 先求x,y的lca,且dep[x]<dep[y] ...

  10. 在线倍增法求LCA专题

    1.cojs 186. [USACO Oct08] 牧场旅行 ★★   输入文件:pwalk.in   输出文件:pwalk.out   简单对比时间限制:1 s   内存限制:128 MB n个被自 ...

随机推荐

  1. block的是发送信号的线程,又不是处理槽函数的线程

    请问UI线程给子线程发信号,应该用哪种连接方式? 如果子线程正在执行一个函数,我发射信号去执行子线程的另一个函数,那么此时子线程到底会执行什么呢? 用信号量做的同步.第一把信号槽的事件丢到线程的事件队 ...

  2. VS2012中使用纯C实现COM的小问题

    用VS2012新建C++工程都预定义了宏__cplusplus,所以引用到的都是C++的定义.但是要用C实现的话,一般都是也就不是C++的了.比如以下代码: #undef INTERFACE #def ...

  3. 【CF】259 Div.1 B Little Pony and Harmony Chest

    还蛮有趣的一道状态DP的题目. /* 435B */ #include <iostream> #include <string> #include <map> #i ...

  4. oracle core04_undo

    undo信息 oracle中undo的信息主要完成下面的功能: 1,构建块一致性读 2,回滚事务 UBA:undo block address 1,块中的事务槽ITL中的UBA表示这个ITL所在的bl ...

  5. Codevs_2102_石子归并2_(环状动态规划)

    描述 http://codevs.cn/problem/2102/ 2102 石子归并 2 时间限制: 10 s 空间限制: 256000 KB 题目等级 : 黄金 Gold           题目 ...

  6. Redis 入门第一发

    Redis 官网:http://redis.io/ 中文:http://www.redis.cn/topics/replication.html         http://www.redis.cn ...

  7. DBcontext应用于已存在数据库

    转自:http://www.cnblogs.com/Tally/archive/2013/01/30/2882855.html EF4.1有三种方式来进行数据操作及持久化.分别是Database-Fi ...

  8. (转载)mysql decimal、numeric数据类型

    (转载)http://www.cnblogs.com/qiantuwuliang/archive/2010/11/03/1867802.html 可能做程序的人都知道,float类型是可以存浮点数(即 ...

  9. SQL重复记录处理(查找,过滤,删除)

    SQL重复记录处理(查找,过滤,删除)     ID int    Title nvarchar(50)    AddDate datetime    数据  www.2cto.com     ID ...

  10. 字符串编码、Base64字符串 互转

    /// <summary>  /// 将字符串编码为Base64字符串  /// </summary>  /// <param name="str"& ...