zoj 3460 Missile【经典建图&&二分】
Missile
Time Limit: 2 Seconds Memory Limit: 65536 KB
You control N missile launching towers. Every tower has enough missiles, but for each tower only one missile can be launch at the same time. Before the launching, every missile need T1 seconds to leave the tower. Assume that all the missiles have the same speed V, and it would fly along the shortest path to the target. You can just consider the horizontal distance and ignore the height. You can consider the time equal to distance / V (minutes). The missile can immediately destroy the target when it reached. Besides, for the same tower, after launching a missile, it need T2 minutes to prepare for the next one.
Now, give you the coordinate position of N missile launching towers and M targets, T1, T2 and V, you should find the minimum minutes to destroy all the targets.
Input
The input will consist of about 10 cases. The first line of each case contains five positive integer numbers N, M, T1, T2 and V, decribed as above. The next M lines contains two integer numbers indicating the coordinate of M targets. The continueing N lines contains two integer numbers indicating the coordinate of N towers.
To all the
cases, 1 ≤ N ≤ 50, 1 ≤ M ≤ 50
The absolute value of all the
coordinates will not exceed 10000, T1,
T2, V will not exceed 2000.
Output
For each case, the output is only one line containing only one real number
with six digits precision (after a decimal point) indicating the minimum minutes
to destroy all the targets.
Sample Input
3 3 30 20 1
0 0
0 50
50 0
50 50
0 1000
1000 0
Sample Output
91.500000
题意:用N个导弹发射塔攻击M个目标。每个导弹发射塔只能同时为一颗导弹服务,发射一颗导弹后需要T1(这里用的是秒)的时间才能离开当前的导弹发射塔,一颗导弹从发射到击中目标的时间与目标到发射塔的距离有关(直线距离),每颗导弹发射完成之后发射塔需要T2的时间准备下一个。现在给出N个导弹发射塔和M个目标的位置坐标以及T1,T2,V,问用这N个导弹发射塔最少需要多少时间可以击毁所有M个目标。
具体实现
一:对每一个导弹发射器,它击中一个目标共有M种情况:分别为在该发射塔第一次发射、第二次发射、第三次发射...一直到第M次发射。因此我们可以把每一个导弹发射塔拆分成M个发射塔,它们与同一个目标的距离是一样的,唯一不同是T1、T2的花销占时不一样。
二:这样的话我们就得到了N*M个点发射器到 M个目标的映射,所表示的关系是当前发射塔击中目标的耗时。
三:设立超级源点0,超级汇点 N * M + M + 1。
四:超级源点到每个发射塔(拆分后的)引一条容量为1的边,每个目标到超级汇点引一条容量为1的边,按若小于当前查询时间的关系(同匹配建边)建边容量为1。
然后跑最大流,判断最大流是否为M。 接着二分查找。
以上解析来自会长大大:http://blog.csdn.net/hpuhjh/article/details/47334625
太弱了 这道题自己建不出来图,
//#include<stdio.h>
//#include<string.h>
//#include<math.h>
//#include<queue>
//#include<stack>
//#include<algorithm>
//#define MAX 110
//#define DD double
//#define INF 0x7fffff
//#define MAXM 500100
//using namespace std;
//struct node
//{
// int from,to,cap,flow,next;
//}edge[MAXM];
//int dis[MAX],vis[MAX];
//int cur[MAX];
//int ans,head[MAX];
//int n,m;
//DD t1,t2,v;
////DD toalx[MAX],toaly[MAX],towrx[MAX],towry[MAX];
//struct record
//{
// DD x,y;
//};
//DD time[3000][MAX];
//DD map[MAX][MAX];
//void init()
//{
// ans=0;
// memset(head,-1,sizeof(head));
//}
//void add(int u,int v,int w)
//{
// edge[ans]={u,v,w,0,head[u]};
// head[u]=ans++;
// edge[ans]={v,u,0,0,head[v]};
// head[v]=ans++;
//}
//DD dist(record a,record b)
//{
// return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
//}
//record towr[MAX];
//record toal[MAX];
//void input()
//{
// int i,j,k;
//
// for(i=1;i<=m;i++)
// scanf("%lf%lf",&toal[i].x,&toal[i].y);
// for(i=1;i<=n;i++)
// scanf("%lf%lf",&towr[i].x,&towr[i].y);
// for(i=1;i<=n;i++)
// for(j=1;j<=m;j++)
// map[i][j]=dist(towr[i],toal[j]);
// for(i=1;i<=n;i++)
// for(k=1;k<=m;k++)
// for(j=1;j<=m;j++)
// time[(i - 1) * m + k][j] = t1 * k + t2 * (k - 1) + map[i][j] / v;
//}
//void getmap(double Max)
//{
// int i,j;
// for(i=1;i<=n*m;i++)
// add(0,i,1);
// for(i=n*m+1;i<=n*m+m;i++)
// add(i,n*m+m+1,1);
// for(i=1;i<=n*m;i++)
// {
// for(j=1;j<=m;j++)
// {
// if(time[i][j]<=Max)
// add(i,j+n*m,1);
// }
// }
//}
//
//
//int bfs(int beg,int end)
//{
// queue<int>q;
// memset(vis,0,sizeof(vis));
// memset(dis,-1,sizeof(dis));
// while(!q.empty()) q.pop();
// vis[beg]=1;
// dis[beg]=0;
// q.push(beg);
// while(!q.empty())
// {
// int u=q.front();
// q.pop();
// for(int i=head[u];i!=-1;i=edge[i].next)
// {
// node E=edge[i];
// if(!vis[E.to]&&E.cap>E.flow)
// {
// dis[E.to]=dis[u]+1;
// vis[E.to]=1;
// if(E.to==end) return 1;
// q.push(E.to);
// }
// }
// }
// return 0;
//}
//int dfs(int x,int a,int end)
//{
// if(x==end||a==0)
// return a;
// int flow=0,f;
// for(int& i=cur[x];i!=-1;i=edge[i].next)
// {
// node& E=edge[i];
// if(dis[E.to]==dis[x]+1&&(f=dfs(E.to,min(a,E.cap-E.flow),end))>0)
// {
// E.flow+=f;
// edge[i^1].flow-=f;
// flow+=f;
// a-=f;
// if(a==0) break;
// }
// }
// return flow;
//}
//int maxflow(int beg,int end)
//{
// int flow=0;
// while(bfs(beg,end))
// {
// memcpy(cur,head,sizeof(head));
// flow+=dfs(beg,INF,end);
// }
// return flow;
//}
//int main()
//{
// int t;
// while(scanf("%d%d%lf%lf%lf",&n,&m,&t1,&t2,&v)!=EOF)
// {
// t1=t1/60;
// input();
// double l=0.0, r =200000000000.0,mid;
// while(r-l>=1e-8)
// {
// mid=(l+r)/2;
// init();
// getmap(mid);
// if(maxflow(0,n*m+m+1)>=m)
// r=mid;
// else
// l=mid;
// }
// printf("%.6lf\n",r);
// }
// return 0;
//} #include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
#define INF 0x3f3f3f3f
#define maxn 5000
#define maxm 500000
using namespace std; int head[maxn], cur[maxn], cnt;
int dist[maxn], vis[maxn];
struct node
{
int u,v,cap,flow,next;
};
struct NODE
{
double x, y;
};
node edge[maxm];
NODE tower[60];
NODE target[60];
int N, M;
double T1, T2, V;
double map[60][60];
double Time[3000][60];
double change(NODE a, NODE b)
{
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
void init()
{
cnt = 0;
memset(head, -1, sizeof(head));
}
void add(int u, int v, int w){
node E1 = {u, v, w, 0, head[u]};
edge[cnt] = E1;
head[u] = cnt++;
node E2 = {v, u, 0, 0, head[v]};
edge[cnt] = E2;
head[v] = cnt++;
}
void getmap(double max_min)
{
int i, j;
for(i = 1; i <= N * M; ++i)
add(0, i, 1);
for(i = N * M + 1; i <= N * M + M; ++i)
add(i, N * M + M + 1, 1);
for(i = 1; i <= N * M; ++i)
for(j = 1; j <= M; ++j)
if(Time[i][j] <= max_min)//找最小时间建图
add(i, j + N * M, 1);
}
bool BFS(int st, int ed)
{
queue<int>q;
memset(vis, 0, sizeof(vis));
memset(dist, -1, sizeof(dist));
q.push(st);
vis[st] = 1;
dist[st] = 0;
while(!q.empty()){
int u = q.front();
q.pop();
for(int i = head[u]; i != -1; i = edge[i].next){
node E = edge[i];
if(!vis[E.v] && E.cap > E.flow){
vis[E.v] = 1;
dist[E.v] = dist[u] + 1;
if(E.v == ed) return true;
q.push(E.v);
}
}
}
return false;
}
int DFS(int x, int ed, int a)
{
if(a == 0 || x == ed)
return a;
int flow = 0, f;
for(int &i = cur[x]; i != -1; i =edge[i].next)
{
node &E = edge[i];
if(dist[E.v] == dist[x] + 1 && (f = DFS(E.v, ed, min(a, E.cap - E.flow))) > 0){
E.flow += f;
edge[i ^ 1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
}
return flow;
} int maxflow (int st, int ed)
{
int flowsum = 0;
while(BFS(st, ed))
{
memcpy(cur, head, sizeof(head));
flowsum += DFS(st, ed, INF);
}
return flowsum;
}
int main ()
{
while(scanf("%d%d%lf%lf%lf", &N, &M, &T1, &T2, &V) != EOF){
T1 = T1 / 60;//t1给的单位是秒 要转换为分
int i, j, k;
for(j = 1; j <= M; ++j)
scanf("%lf%lf", &target[j].x, &target[j].y);
for(i = 1; i <= N; ++i)
scanf("%lf%lf", &tower[i].x, &tower[i].y);
for(i = 1; i <= N; ++i)
for(j = 1; j <= M; ++j)
map[i][j] = change(tower[i], target[j]);
//map[][]表示第i个塔到j个目标的距离
for(i = 1; i <= N; ++i)
for(k = 1; k <= M; ++k)//k表示的是发射第k个导弹
{
for(j = 1; j <= M; ++j)
Time[(i - 1) * M + k][j] = T1 * k + T2 * (k - 1) + map[i][j] / V;
//Time[][]数组表示从第i个塔依次发射炮弹到每个目标所分别需要的时间
}
double l = 0.0, r = 200000000000.0, mid;
while(r - l >= 1e-8)
{
mid = (l + r) / 2;
init();
getmap(mid);//每次补充建图
if(maxflow(0, N * M + M + 1) >= M)
r = mid;
else
l = mid;
}
printf("%.6lf\n", r);
}
return 0;
}
zoj 3460 Missile【经典建图&&二分】的更多相关文章
- hdoj--5093--Battle ships(二分图经典建图)
Battle ships Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Tot ...
- poj--1149--PIGS(最大流经典建图)
PIGS Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %I64d & %I64u Submit Status D ...
- BZOJ-1822 Frozen Nova 冷冻波 计(jie)算(xi)几何+二分+最大流判定+经典建图
这道逼题!感受到了数学对我的深深恶意(#‵′).... 1822: [JSOI2010]Frozen Nova 冷冻波 Time Limit: 10 Sec Memory Limit: 64 MB S ...
- 【ARC069F】Flags 2-sat+线段树优化建图+二分
Description 数轴上有 n 个旗子,第 ii 个可以插在坐标 xi或者 yi,最大化两两旗子之间的最小距离. Input 第一行一个整数 N. 接下来 N 行每行两个整数 xi, ...
- POJ 2226 最小点覆盖(经典建图)
Muddy Fields Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8881 Accepted: 3300 Desc ...
- hdu 4185 Oil Skimming(二分图匹配 经典建图+匈牙利模板)
Problem Description Thanks to a certain "green" resources company, there is a new profitab ...
- 2-sat——poj3678经典建图
比较经典的建图,详见进阶指南 2-sat一般要用到tarjan来求强连通分量 /*2-sat要加的是具有强制关系的边*/ #include<iostream> #include<cs ...
- 网络流--最大流--POJ 2139(超级源汇+拆点建图+二分+Floyd)
Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the ...
- hdu4560 不错的建图,二分最大流
题意: 我是歌手 Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total Subm ...
随机推荐
- Python属性、方法和类管理系列之----元类
元类的介绍 请看位于下面网址的一篇文章,写的相当好. http://blog.jobbole.com/21351/ 实例补充 class Meta(type): def __new__(meta, c ...
- CSS 实现背景半透明
IE过渡滤镜 + CSS3 rgba 即可完美实现. 具体实现代码如下: .transparent { background:rgba(0, 0, 0, 0.3); filter:pr ...
- 再撸一次简单的NODE.JS
这毕竟大势所趋,了解一下无防的. 最终,对JS的要求还是有点高... 以后弄过一次,很快就忘了. 再来再拾起来一下. server.js var http = require("http&q ...
- net中System.Security.Cryptography 命名空间 下的加密算法
.net中System.Security.Cryptography命名空间 在.NETFramework出现之前,如果我们需要进行加密的话,我们只有各种较底层的技术可以选择,如 Microsoft C ...
- 测试ODBC与OLE
using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Data. ...
- 【PythonChallenge】Level 3
题目为正则表达式,需要注意EXACTLY的含义,即AAAAxBBB中x不满足条件,但aAAAxBBBa却满足条件.使用perl解决此题,利用s///替换字母,循环读取整个源码文件,结果为linkedl ...
- Oracle系列之触发器
涉及到表的处理请参看原表结构与数据 Oracle建表插数据等等 创建一个触发器,使其可以修改tb_Department表的deptno. create or replace trigger upda ...
- AHOI2009最小割
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1072 Solved: 446[Submit] ...
- How to Customize Server Header using NginX headers-more module
http://wiki.nginx.org/HttpHeadersMoreModule#Version headers_more When you are browsing a website, yo ...
- 虚拟主机apache
1.虚拟主机配置 windows: 1)加载配置虚拟主机的配置文件,在Apache/conf中找到httpd.conf文件,并搜索出以下的两句话,将Include conf/extra/httpd-v ...