HDU 5015 233 Matrix
题意:给定一个矩阵的第0列的第1到n个数,第一行第1个数开始每个数分别为233, 2333........,求第n行的第m个数。
分析:
其实也没那么难,自己想了半天还没往对的方向想,m最大1e9,应该立即想到要用到快速幂,关键在于递推矩阵。
递推矩阵的作用是依次算出每一列,第1列第一个数233是前一列的23*10+3,将前一列增加一个元素[3, 23, a1, a2,....an],然后第一列第一个数为3,对应向量[1, 0, 0, 0.....0],233对应向量[1, 10, 0, .....0],下一个的数对应[1, 10, 1.....0], 接下来每个数对应的向量是上一个数的向量最后一个1元素后面增加1个1,这样将n+2个向量构成一个(n+2)*(n+2)的矩阵,需要求m次该矩阵,然后和[3, 23, a1, a2, .....an]相乘。
代码:
#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#define inf 0x0f0f0f0f
#define pb push_back
#define bug(x) printf("line %d: >>>>>>>>>>>>>>>\n", (x));
#define in freopen("F:\\code\\data\\data.txt", "r", stdin);
#define out freopen("F:\\code\\data\\data_out.txt", "w", stdout); #define SZ(x) ((int)x.size())
#define lson rt<<1, l, m
#define rson rt<<1|1, m+1, r
using namespace std; typedef long long LL;
const int maxn = ;
const int M = ; struct Matrix
{
int n, m;
LL a[maxn][maxn];
Matrix(int n, int m)
{
this->n = n;
this->m = m;
for(int i = ; i < maxn; i++)
for(int j = ; j < maxn; j++)
a[i][j] = ;
}
Matrix operator * (const Matrix &o)const
{
Matrix c(n, o.m);
for(int i = ; i < n; i++)
for(int j = ; j < o.m; j++)
{
for(int k = ; k < m; k++)
c.a[i][j] = (c.a[i][j]+a[i][k]*o.a[k][j]%M)%M;
}
return c;
}
};
int n, m;
int main()
{ while(scanf("%d%d", &n, &m) == )
{
Matrix f(n+, n+), res(n+, n+), tmp(n+, );
tmp.a[][] = ;
tmp.a[][] = ;
for(int i = ; i <= n+; i++)
scanf("%I64d", &tmp.a[i][]);
for(int i = ; i <= n+; i++)
for(int j = ; j <= n+; j++)
{
if(i == )
{
f.a[i][] = ;
break;
}
else if(i == )
{
f.a[i][] = ;
f.a[i][] = ;
break;
}
else
{
if(j < i)
f.a[i][j] = f.a[i-][j];
else if(j == i) f.a[i][j] = ;
}
}
for(int i = ; i < n+; i++)
for(int j = ; j < n+; j++)
if(i == j)
res.a[i][j] = ;
while(m)
{
if(m&)
res = res*f;
f = f*f;
m >>= ;
}
tmp = res*tmp;
printf("%I64d\n", tmp.a[n+][]);
}
return ;
}
HDU 5015 233 Matrix的更多相关文章
- HDU - 5015 233 Matrix(杨辉三角/前缀+矩阵快速幂)
233 Matrix In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23 ...
- HDU 5015 233 Matrix(网络赛1009) 矩阵快速幂
先贴四份矩阵快速幂的模板:http://www.cnblogs.com/shangyu/p/3620803.html http://www.cppblog.com/acronix/archive/20 ...
- hdu 5015 233 Matrix (矩阵高速幂)
233 Matrix Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Tota ...
- HDU - 5015 233 Matrix (矩阵快速幂)
In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 23333, or 233 ...
- hdu 5015 233 Matrix(构造矩阵)
http://acm.hdu.edu.cn/showproblem.php?pid=5015 由于是个二维的递推式,当时没有想到能够这样构造矩阵.从列上看,当前这一列都是由前一列递推得到.依据这一点来 ...
- HDU 5015 233 Matrix --矩阵快速幂
题意:给出矩阵的第0行(233,2333,23333,...)和第0列a1,a2,...an(n<=10,m<=10^9),给出式子: A[i][j] = A[i-1][j] + A[i] ...
- hdu 5015 233矩阵快速幂
http://acm.hdu.edu.cn/showproblem.php?pid=5015 需要构造一个 n+2 维的矩阵. 就是要增加一维去维护2333这样的序列. 可以发现 2333 = 233 ...
- HDU [P5015] 233 Matrix
矩阵快速幂 按列递推 #include <iostream> #include <cstdio> #include <cstdlib> #include <a ...
- Spring-1-I 233 Matrix(HDU 5015)解题报告及测试数据
233 Matrix Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descript ...
随机推荐
- think straight系列读书笔记之《暗时间》
一周一篇读书笔记,这是第零篇,为啥从零计数,你们懂的~ 大二读了<暗时间>,这本书带我进入了心理学的大门,让我开始关注思维,专注,效率,认知,记忆等东西.两年之后重读这本书,依然收获很 ...
- css扁平化博客学习总结(二)css样式重置
css样式重置 方法一:不推荐使用,这么写会让网页解析速度变慢. *{ margin: 0; padding: 0;} 方法二:大家常用的写法,比较流行. body, html, div, block ...
- ASP中双引号单引号和&连接符使用技巧
ASP中双引号单引号和&连接符使用技巧 一.ASP中处在双引号中的可以是任意的字符.字符串,HTML代码 1.<%response.write ("I am here" ...
- LaTeX Pdf to Word
用LaTeX写的文稿,生成的pdf,如果要改成word文档,如何是最合适的方式? 查了很多帖子,比较靠谱的一种方式是先将pdf转成rtf格式,再用word打开rtf文件.也有直接从tex文件直接转成d ...
- Spring集成PageHelper的简单用法
1.Maven依赖,注意使用PageHelper时的版本必须与Mybatis版本对应 <!-- 添加Mybatis依赖 --> <dependency> <groupId ...
- 17_高级映射:一对一查询(使用resultType)
[数据库模型] [各个表] [ 用户表user ] 购买商品的用户信息. [ 订单表 ] 用户所创建的订单 [ 订单明细表 ] 订单的详细信息,即购买商品的信息 [ 商品表 ] 商品的具体信息 [有关 ...
- OpenJudge/Poj 1844 Sum
1.链接地址: http://bailian.openjudge.cn/practice/1844 http://poj.org/problem?id=1844 2.题目: Sum Time Limi ...
- win7上帝模式
在win7 系统桌面或任意磁盘下新建文件夹,将文件夹改名为 GodModel.{ED7BA470-8E54-465E-825C-99712043E01C}
- centos svn安装
http://fengjunoo.iteye.com/blog/1759265(参考) 以前在ubuntu上安装过一次svn,那次弄得有些麻烦. 这次记录下centos环境下安装svn的步骤 其实简单 ...
- Linux---vi编辑器必会操作
移动光标: (1)基本的上下左右:通过箭头按键控制 (2)跳到一行的末尾:键盘"end" (3)跳到一行的开头:键盘"home" (4)跳到最后一行:shift ...