Problem Description

=== Op tech briefing, 2002/11/02 06:42 CST ===

“The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein’s secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, …, Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary.”

v - w^2 + x^3 - y^4 + z^5 = target

“For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn’t exist then.”

=== Op tech directive, computer division, 2002/11/02 12:30 CST ===

“Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or ‘no solution’ if there is no correct combination. Use the exact format shown below.”

Sample Input

1 ABCDEFGHIJKL

11700519 ZAYEXIWOVU

3072997 SOUGHT

1234567 THEQUICKFROG

0 END

Sample Output

LKEBA

YOXUZ

GHOST

no solution

上个我用枚举做了,感觉不怎么好,毕竟是练算法的,就试试了深搜。

题意:

给你一个数,再给一个全部是大写字母构成的字符串。

从里面选5个字母v,m,x,y,z(不重复),计算v-m^2+x^3-y^4+z^4是否等于目标值

选出来的方案可能有很多种,那么你应该选择字典序最大的那种。

import java.util.Arrays;
import java.util.Scanner; public class Main {
static char handle[] = new char[6];
static char at[]={' ','A','B','C','D','E','F','G','H','I','J'
,'K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'};
static char chs[];
static int target;
static String str;
static boolean map[];//标识是否已经用了
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
//for(int i='A';i<='Z';i++){
//char c = (char)i;
//System.out.print("'"+c+"',");
//}
while(sc.hasNext()){
target = sc.nextInt();
str = sc.next();
if(target==0&&str.equals("END")){
return;
}
map = new boolean[str.length()];
chs = str.toCharArray();
Arrays.sort(chs);
for(int i=0,j=chs.length-1;i<chs.length/2;i++,j--){
char c=chs[i];
chs[i]=chs[j];
chs[j]=c;
} if(dfs(0)){
for(int i=0;i<5;i++){
System.out.print(handle[i]);
}
System.out.println();
}else{
System.out.println("no solution");
} }
}
private static boolean dfs(int m) {
if(m==5){
if( res(handle[0],handle[1],handle[2],handle[3],handle[4]) ){
return true;
}
return false;
}else{
for(int i=0;i<str.length();i++){
if(!map[i]){
map[i]=true;
handle[m]=chs[i];
if(dfs(m+1)){
return true;
}
map[i]=false;
}
}
} return false;
}
private static boolean res(char a, char b, char c, char d, char e) {
int ap[] = new int[5];
for(int j=0;j<ap.length;j++){
for(int i=1;i<at.length;i++){
if(j==0){
if(a==at[i]){
ap[0]=i;
break;
}
}else
if(j==1){
if(b==at[i]){
ap[1]=i;
break;
}
}else
if(j==2){
if(c==at[i]){
ap[2]=i;
break;
}
}else
if(j==3){
if(d==at[i]){
ap[3]=i;
break;
}
}else
if(j==4){
if(e==at[i]){
ap[4]=i;
break;
}
}
}
} int sum=0;
for(int i=0;i<ap.length;i++){
if(i%2==0){
sum+=Math.pow(ap[i], i+1);
}else{
sum-=Math.pow(ap[i], i+1);
}
}
if(sum==target){
return true;
}else{
return false;
}
}
}

HDOJ/HDU 1015 Safecracker(深搜)的更多相关文章

  1. HDOJ(HDU).1015 Safecracker (DFS)

    HDOJ(HDU).1015 Safecracker [从零开始DFS(2)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双重DFS HDOJ.1 ...

  2. HDOJ/HDU 1015 Safecracker(枚举、暴力)

    Problem Description === Op tech briefing, 2002/11/02 06:42 CST === "The item is locked in a Kle ...

  3. hdu 1015 Safecracker 水题一枚

    题目链接:HDU - 1015 === Op tech briefing, 2002/11/02 06:42 CST === "The item is locked in a Klein s ...

  4. 题解报告:hdu 1015 Safecracker

    Problem Description === Op tech briefing, 2002/11/02 06:42 CST ===  "The item is locked in a Kl ...

  5. hdu 1518 Square 深搜,,,,花样剪枝啊!!!

    Square Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

  6. Block Breaker HDU - 6699(深搜,水,写下涨涨记性)

    Problem Description Given a rectangle frame of size n×m. Initially, the frame is strewn with n×m squ ...

  7. HDU 1015 Safecracker

    解题思路:这题相当诡异,样例没过,交了,A了,呵呵,因为理论上是可以通过的,所以 我交了一发,然后就神奇的过了.首先要看懂题目. #include<cstdio> #include< ...

  8. ZOJ 1403&&HDU 1015 Safecracker【暴力】

    Safecracker Time Limit: 2 Seconds      Memory Limit: 65536 KB === Op tech briefing, 2002/11/02 06:42 ...

  9. HDU 1015 Safecracker【数值型DFS】

    Safecracker Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

随机推荐

  1. 14_Xml继承

    [工程截图] [Person.java] package com.HigginCui; public class Person { private String name; public String ...

  2. 02_Jquery_04_属性选择器

    [简述] [index.jsp] <%@ page language="java" import="java.util.*" pageEncoding=& ...

  3. OpenCV(2)-Mat数据结构及访问Mat中像素

    Mat数据结构 一开始OpenCV是基于C语言的,在比较早的教材例如<学习OpenCV>中,讲解的存储图像的数据结构还是IplImage,这样需要手动管理内存.现在存储图像的基本数据结构是 ...

  4. hdu 1286 找新朋友 (欧拉函数)

    Problem Description 新年快到了,"猪头帮协会"准备搞一个聚会,已经知道现有会员N人,把会员从1到N编号,其中会长的号码是N号,凡是和会长是老朋友的,那么该会员的 ...

  5. 现代密码学应用的范例-PGP

    PGP(Pretty Good Privacy),是一个基于RSA公钥加密体系的邮件加密软件. 产生背景: 电子邮件在传输中使用SMTP协议存在这样的问题 1.无法保证邮件在传输过程中不被人偷看 2. ...

  6. Android学习5—布局简介

    Android界面的布局主要有四种,分别为RelativeLayout.LinearLayout.TableLayout.FrameLayout,接下来分别介绍这些布局如何使用(为了简单起见,接下来的 ...

  7. php 地址跳转

    header('Location: ' . $sns->getRequestCodeURL());

  8. MySQL事务隔离级别初探

    MySQL有四种隔离级别,分别是: READ UNCOMMITTED(未提交读) READ COMMITTED(提交读) REPEATABLE READ (可重复读) SERIALIZABLE(可串行 ...

  9. 大量字段表单在PHP便捷处理分享

    关于程序开发中的表单批量提交策略很多时候一个表单太多的字段,如何能够高效获取表单字段,也为如何提神开发的效率和统一性? 比如一个系统的某个有26个字段,那么我用表单的名称用26个a到z的字母, 你是选 ...

  10. Python深入学习笔记(一)

    写在前面的话 从08年接触Python到现在,断断续续地使用,到如今Python已经成为日常事物处理.科研实验,甚至工程项目的主力语言,主要因为其敏捷性和快速实现的能力.虽然看了一些Python的教程 ...