Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 9163   Accepted: 5617

Description

Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. 
It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights. 
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.

Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device. 
It is guaranteed that will exist at least one solution for each test case at the evaluation. 

Input

The input has the following structure: 
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20); 
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm); 
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values. 

Output

The output contains the number M representing the number of possibilities to poise the balance.

Sample Input

  1. 2 4
  2. -2 3
  3. 3 4 5 8

Sample Output

  1. 2
  2.  
  3. 没想到是个背包题,还是01背包,看看大神的讲解吧。

题目大意:

有一个天平,天平左右两边各有若干个钩子,总共有C个钩子,有G个钩码,求将钩码全部挂到钩子上使天平平衡的方法的总数。

其中可以把天枰看做一个以x轴0点作为平衡点的横轴

输入:

2 4 //C 钩子数 与 G钩码数

-2 3 //负数:左边的钩子距离天平中央的距离;正数:右边的钩子距离天平中央的距离c[k]

3 4 5 8 //G个重物的质量w[i]

dp思路:

每向天平中方一个重物,天平的状态就会改变,而这个状态可以由若干前一状态获得。

首先定义一个平衡度j的概念

当平衡度j=0时,说明天枰达到平衡,j>0,说明天枰倾向右边(x轴右半轴),j<0则相反

那么此时可以把平衡度j看做为衡量当前天枰状态的一个值

因此可以定义一个 状态数组dp[i][j],意为在挂满前i个钩码时,平衡度为j的挂法的数量。

由于距离c[i]的范围是-15~15,钩码重量的范围是1~25,钩码数量最大是20

因此最极端的平衡度是所有物体都挂在最远端,因此平衡度最大值为j=15*20*25=7500。原则上就应该有dp[ 1~20 ][-7500 ~ 7500 ]。

因此为了不让下标出现负数,做一个处理,使使得数组开为 dp[1~20][0~15000],则当j=7500时天枰为平衡状态

那么每次挂上一个钩码后,对平衡状态的影响因素就是每个钩码的 力臂

力臂=重量 *臂长 = w[i]*c[k]

那么若在挂上第i个砝码之前,天枰的平衡度为j

(换言之把前i-1个钩码全部挂上天枰后,天枰的平衡度为j)

则挂上第i个钩码后,即把前i个钩码全部挂上天枰后,天枰的平衡度 j=j+ w[i]*c[k]

其中c[k]为天枰上钩子的位置,代表第i个钩码挂在不同位置会产生不同的平衡度

不难想到,假设 dp[i-1][j] 的值已知,设dp[i-1][j]=num

(即已知把前i-1个钩码全部挂上天枰后得到状态j的方法有num次)

那么dp[i][ j+ w[i]*c[k] ] = dp[i-1][j] = num

(即以此为前提,在第k个钩子挂上第i个钩码后,得到状态j+ w[i]*c[k]的方法也为num次)

想到这里,利用递归思想,不难得出 状态方程dp[i][ j+ w[i]*c[k] ]= ∑(dp[i-1][j])

有些前辈推导方式稍微有点不同,得到的 状态方程为dp[i][j] =∑(dp[i - 1][j - c[i] * w[i]])

其实两条方程是等价的,这个可以简单验证出来,而且若首先推导到第二条方程,也必须转化为第一条方程,这是为了避免下标出现负数

 

结论:

最终转化为01背包问题

状态方程dp[i][ j+ w[i]*c[k] ]= ∑(dp[i-1][j])

初始化:dp[0][7500] = 1;   //不挂任何重物时天枰平衡,此为一个方法

  1. #include<stdio.h>
  2. #include<string.h>
  3.  
  4. int dp[][];
  5. int main()
  6. {
  7. int c,g;
  8. int pos[],w[];
  9. scanf("%d %d",&c,&g);
  10. for(int i = ; i <= c; i++)
  11. scanf("%d",&pos[i]);
  12. for(int i = ; i <= g; i++)
  13. scanf("%d",&w[i]);
  14. memset(dp,,sizeof(dp));
  15. dp[][] = ;
  16. for(int i = ; i <= g; i++)
  17. {
  18. for(int j = ; j <= ; j++)
  19. {
  20. if(dp[i-][j])
  21. {
  22. for(int k = ; k <= c; k++)
  23. dp[i][j+w[i]*pos[k]] += dp[i-][j];
  24. }
  25. }
  26. }
  27. printf("%d\n",dp[g][]);
  28. return ;
  29. }

Balance(01背包)的更多相关文章

  1. POJ1873 - Balance(01背包)

    题目大意 现有一个天平,它有C个挂钩和G个砝码,问有多少种方法可以使得天平平衡(砝码必须用完) 题解 其实就是让背包容量为0的方法有多少种方法,但是这样的话背包容量会出现负数,所以可以平移一下,背包容 ...

  2. POJ 1837 Balance 01背包

    题目: http://poj.org/problem?id=1837 感觉dp的题目都很难做,这道题如果不看题解不知道憋到毕业能不能做出来,转化成了01背包问题,很神奇.. #include < ...

  3. POJ 1837 Balance(01背包变形, 枚举DP)

    Q: dp 数组应该怎么设置? A: dp[i][j] 表示前 i 件物品放入天平后形成平衡度为 j 的方案数 题意: 有一个天平, 天平的两侧可以挂上重物, 给定 C 个钩子和G个秤砣. 2 4 - ...

  4. HDU 5616 Jam's balance(01背包)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=5616 题目: Jam's balance Time Limit: 2000/1000 MS (Java ...

  5. Jam's balance HDU - 5616 (01背包基础题)

    Jim has a balance and N weights. (1≤N≤20) The balance can only tell whether things on different side ...

  6. poj 1837 01背包

    Balance Time Limit: 1000 MS Memory Limit: 30000 KB 64-bit integer IO format: %I64d , %I64u Java clas ...

  7. UVALive 4870 Roller Coaster --01背包

    题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F ,     D -= K 问在D小于等于一定限度的时 ...

  8. POJ1112 Team Them Up![二分图染色 补图 01背包]

    Team Them Up! Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7608   Accepted: 2041   S ...

  9. Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)

    传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...

随机推荐

  1. iOS-#ifdef DEBUG代码块介绍

    iOS-#ifdef DEBUG宏定义介绍 一.#ifdef DEBUG代码块 #ifdef DEBUG // Debug 模式的代码... #else // Release 模式的代码... #en ...

  2. thinkphp实现短信验证注册

    前言 注册时经常需要用到短信验证码,本文记录一下思路和具体实现. 短信验证平台使用云片,短信验证码的生成使用thinkphp. 思路 1.用户输入手机号,请求获取短信验证码. 2.thinkphp生成 ...

  3. linux下MySQL安装登录及操作

    linux下MySQL安装登录及操作 二.安装Mysql 1.下载MySQL的安装文件 安装MySQL需要下面两个文件: MySQL-server-4.0.16-0.i386.rpm MySQL-cl ...

  4. [转] CSS float 浮动属性

    http://www.cnblogs.com/polk6/p/3142187.html CSS float 浮动属性 本篇主要介绍float属性:定义元素朝哪个方向浮动. 目录: 1. 页面布局方式: ...

  5. Java多线程——其他工具类CyclicBarrier、CountDownLatch和Exchange

    CyclicBarrier 适用于:创建一组任务,它们并行地执行任务,然后在进行下一个步骤之前等待,直至所有任务完成.它使得所有的并行任务都将在栅栏处列队,因此可以一致地向前移动. 表示大家彼此等待, ...

  6. 网站分析统计JS源码分享

    之前公司做了一个分析云平台,用来跟踪收集海量的用户行为的相关数据,供运营人员实时监控网站访问量,统计PV,UV,独立IP,访问时段,访问时长,热点追踪等多类信息,我用JS写了一个小插件,只需要再页面加 ...

  7. SQL server 如何附加、还原、分离、备份数据库文件

    No1 : 附加 No2 : 还原            一.(需要 .bak文件)首先建立一个数据库,数据库名称与你的.bak文件名要相同. 当然.这时候的这个数据库还是空的,需要还原回去数据.右键 ...

  8. 关于 Repository和UnitOfWork 模式的关系

    本以为,关于这方面的理解,园子中的文章已经很多的了,再多做文章真的就“多做文章了”,但是最近发现,还是有必要的,首先,每个人对于同一事物的理解方式和出发点都是不同的,所以思考的方式得到结果也是不同的. ...

  9. Vijos1825 NOI2008 志愿者招募 费用流

    Orz ByVoid大神的题解:https://www.byvoid.com/blog/noi-2008-employee/ 学习网络流建图的好题,不难想到线性规划的模型,不过利用模型的特殊性,结合网 ...

  10. AbstractFactory 模式

    ///////////////////////Product.h////////////// #ifndef _PRODUCT_H_ #define _PRODUCT_H_ class Abstrac ...