【HDU 1542】Atlantis 矩形面积并(线段树,扫描法)
【题目】
Atlantis
Problem DescriptionThere are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.InputThe input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.
The input file is terminated by a line containing a single 0. Don’t process it.OutputFor each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.
Output a blank line after each test case.Sample Input2
10 10 20 20
15 15 25 25.5
0Sample OutputTest case #1
Total explored area: 180.00
第一次做线段树扫描法的题,网搜各种讲解,发现大多数都讲得太过简洁,不是太容易理解。所以自己打算写一个详细的。看完必会o(∩_∩)o
顾名思义,扫描法就是用一根想象中的线扫过所有矩形,在写代码的过程中,这根线很重要。方向的话,可以左右扫,也可以上下扫。方法是一样的,这里我用的是由下向上的扫描法。
如上图所示,坐标系内有两个矩形。位置分别由左下角和右上角顶点的坐标来给出。上下扫描法是对x轴建立线段树,矩形与y平行的两条边是没有用的,在这里直接去掉。如下图。
现想象有一条线从最下面的边开始依次向上扫描。线段树用来维护当前覆盖在x轴上的线段的总长度,初始时总长度为0。用ret来保存矩形面积总和,初始时为0。
由下往上扫描,扫描到矩形的底边时将它插入线段树,扫描到矩形的顶边时将底边从线段树中删除。而在代码中实现的方法就是,每条边都有一个flag变量,底边为1,顶边为-1。
用cover数组(通过线段树维护)来表示某x轴坐标区间内是否有边覆盖,初始时全部为0。插入或删除操作直接让cover[] += flag。当cover[] > 0 时,该区间一定有边覆盖。
开始扫描到第一条线,将它压入线段树,此时覆盖在x轴上的线段的总长度L为10。计算一下它与下一条将被扫描到的边的距离S(即两条线段的纵坐标之差,该例子里此时为3)。
则 ret += L * S. (例子里增量为10*3=30)
结果如下图
橙色区域表示已经计算出的面积。
扫描到第二条边,将它压入线段树,计算出此时覆盖在x轴上的边的总长度。
例子里此时L=15。与下一条将被扫描到的边的距离S=2。 ret += 30。 如下图所示。
绿色区域为第二次面积的增量。
接下来扫描到了下方矩形的顶边,从线段树中删除该矩形的底边,并计算接下来面积的增量。如下图。
蓝色区域为面积的增量。
此时矩形覆盖的总面积已经计算完成。 可以看到,当共有n条底边和顶边时,只需要从下往上扫描n-1条边即可计算出总面积。
此题因为横坐标包含浮点数,因此先离散化。另外,因为用线段树维护的是覆盖在x轴上的边,而边是连续的,并非是一个个断点,因此线段树的每一个叶子结点实际存储的是该点与下一点之间的距离。
12.25
自己总结:
这道题我一直在纠结,怎么求当前有扫描线上有的线段总长?怎么lazy下放?我一直想的是每个点维护的都是它维护的这个区间内的总的cnt等等。
后来我发现换个思路,一切都很简单!
我的每个节点t[x].l~t[x].r维护的其实是线段t[x].l~(t[x].r+1),也就是若干条线段,因为点分成左右孩子的时候会有问题(比如[3,3]维护的到底是什么?)。
我们要把每个节点看成是一条线段。
对于每个节点维护两个值:
cnt:这个点所代表的线段被覆盖了多少次。
len:以这个点为根的子树中被覆盖的区间一共有多长。
当一条线段进来的时候,在代表它的那若干个节点上cnt++,其它节点cnt不用加。
然后len维护的就是这个区间内那些cnt>0的节点所覆盖的区间总长。
我做惯了叶子节点才有实际意义的线段树,思路太过狭隘,被卡了这么久,其实线段树上每个节点都可以有它的实际意义。
【HDU 1542】Atlantis 矩形面积并(线段树,扫描法)的更多相关文章
- (HDU 1542) Atlantis 矩形面积并——扫描线
n个矩形,可以重叠,求面积并. n<=100: 暴力模拟扫描线.模拟赛大水题.(n^2) 甚至网上一种“分块”:分成n^2块,每一块看是否属于一个矩形. 甚至这个题就可以这么做. n<=1 ...
- poj-1151矩形面积并-线段树
title: poj-1151矩形面积并-线段树 date: 2018-10-30 22:35:11 tags: acm 刷题 categoties: ACM-线段树 概述 线段树问题里的另一个问题, ...
- hdu 1255 覆盖的面积(线段树 面积 交) (待整理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1255 Description 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. In ...
- HDU - 1255 覆盖的面积(线段树求矩形面积交 扫描线+离散化)
链接:线段树求矩形面积并 扫描线+离散化 1.给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 2.看完线段树求矩形面积并 的方法后,再看这题,求的是矩形面积交,类同. 求面积时,用被覆 ...
- HDU1542 Atlantis —— 求矩形面积并 线段树 + 扫描线 + 离散化
题目链接:https://vjudge.net/problem/HDU-1542 There are several ancient Greek texts that contain descript ...
- POJ1151Atlantis 矩形面积并[线段树 离散化 扫描线]
Atlantis Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 21734 Accepted: 8179 Descrip ...
- POJ 1151Atlantis 矩形面积并[线段树 离散化 扫描线]
Atlantis Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 21734 Accepted: 8179 Descrip ...
- HDU 1255 覆盖的面积 ——(线段树+扫描线)
又做了一题扫描线以后对节点的覆盖标记理解的更加深刻了. 代码如下: #include <stdio.h> #include <algorithm> #include <s ...
- HDU 1255 覆盖的面积 (线段树扫描线+面积交)
自己YY了一个的写法,不过时间复杂度太高了,网上的想法太6了 题意:给你一些矩阵,求出矩阵的面积并 首先按照x轴离散化线段到线段树上(因为是找连续区间,所以段建树更加好做). 然后我们可以想一下怎样 ...
- HDU - 1255 覆盖的面积 (线段树求面积交)
https://cn.vjudge.net/problem/HDU-1255 题意 给定平面上若干矩形,求出被这些矩形覆盖过至少两次的区域的面积. 分析 求面积并的题:https://www.cnbl ...
随机推荐
- socket.io中emit和on的用法【转】
socket.emit('action');表示发送了一个action命令,命令是字符串的,在另一端接收时,可以这么写: socket.on('action',function(){...});soc ...
- C++Primer笔记二
真是一本好书,就这么点,就感觉学到很多了,当然也是我水平太差. 用shell或者bash的时候有一个文件重定向,就是每次程序运行的时候,我们都需要手动输入内容,然后程序输出内容,这时可以用文件来代替. ...
- WebSocket 实战
http://www.ibm.com/developerworks/cn/java/j-lo-WebSocket/ 本文介绍了 HTML5 WebSocket 的由来,运作机制及客户端和服务端的 AP ...
- ios 消息跳转处理
一.消息转发流程 当向Objective-C对象发送一个消息,但runtime在当前类及父类中找不到此selector对应的方法时,消息转发(message forwarding)流程开始启动. 动态 ...
- 一、Maven环境搭建(windows 环境)
所需工具 : JDK 1.7 java 环境 Maven 3.3.9 下载最新版本 Windows 7 注 Maven 3.2 要求 JDK 1.6 或以上版本, 而 Maven 3.0/3. ...
- C++ Union妙用(将列表初始化用于数组元素)
Union是个不被注意的关键字,意为联合体,这是个诡异的名字.若不是为了继承C语言,它也不会出现在C++中(虽说,union在C++中得到了扩充,完成了接近类的功能).它的作用主要是节省内存空间,在嵌 ...
- webui layout like desktop rich client
similarity similarlike desktop js frameworklike extj js frameworklike rich client js frameworkjs lay ...
- linux管理网络连接指令
ethtool eth0 查看 eth0对应网卡的设置 ethtool -i eth0 查看 eth0网卡的驱动信息 ethtool -S eth0 查看网卡的统计信息 ethtool -s eth ...
- Java LoggingAPI 使用方法
因为不想导入Log4j的jar,项目只是测试一些东西,因此选用了JDK 自带的Logging,这对于一些小的项目或者自己测试一些东西是比较好的选择. Log4j中是通过log4j.properties ...
- Java基础巩固--正则表达式
本篇文章是学习尚学堂的关于正则表达式的视频教程时,所做的笔记.供广大编程爱好者学习之用,也留给日后自己复习使用! 1.为什么要有正则表达式? 正则表达式可以方便的对数据进行匹配,可以进行更加复杂的字符 ...