题目链接:BZOJ - 1016

题目分析

最小生成树的两个性质:

同一个图的最小生成树,满足:

1)同一种权值的边的个数相等

2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性相等

这样,先做一次Kruscal求出每种权值的边的条数,再按照权值从小到大,对每种边进行 DFS, 求出这种权值的边有几种选法。

最后根据乘法原理将各种边的选法数乘起来就可以了。

特别注意:在DFS中为了在向下DFS之后消除决策影响,恢复f[]数组之前的状态,在DFS中调用的Find()函数不能路径压缩。

代码

#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <cstdio>
#include <algorithm> using namespace std; const int MaxN = 100 + 5, MaxM = 1000 + 5, Mod = 31011; int n, m, Top, Sum, Cnt;
int f[MaxN], L[MaxM], R[MaxM], Num[MaxM]; typedef long long LL;
LL Ans; struct Edge
{
int u, v, w;
} E[MaxM]; inline bool Cmp(Edge e1, Edge e2)
{
return e1.w < e2.w;
} inline int Find(int x, int o)
{
int i, j, k;
j = x;
while (j != f[j]) j = f[j];
if (o == 1) return j;
i = x;
while (i != j)
{
k = i;
i = f[i];
f[k] = j;
}
return j;
} void DFS(int Type, int x, int y)
{
if (x == R[Type] + 1)
{
if (y == Num[Type]) ++Cnt;
return;
}
int fx, fy;
fx = Find(E[x].u, 1); fy = Find(E[x].v, 1);
if (fx != fy)
{
f[fx] = fy;
DFS(Type, x + 1, y + 1);
f[fx] = fx;
}
DFS(Type, x + 1, y);
} int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; ++i)
scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].w);
sort(E + 1, E + m + 1, Cmp);
Top = 0; Sum = 0;
int fx, fy;
for (int i = 1; i <= n; ++i) f[i] = i;
for (int i = 1; i <= m; ++i)
{
if (i == 1 || E[i].w != E[i - 1].w) L[++Top] = i;
R[Top] = i;
fx = Find(E[i].u, 0); fy = Find(E[i].v, 0);
if (fx != fy)
{
f[fx] = fy;
++Num[Top];
++Sum;
}
}
if (Sum != n - 1)
{
printf("0\n");
return 0;
}
for (int i = 1; i <= n; ++i) f[i] = i;
Ans = 1;
for (int i = 1; i <= Top; ++i)
{
if (Num[i] == 0) continue;
Cnt = 0;
DFS(i, L[i], 0);
Ans = Ans * (LL)Cnt % Mod;
for (int j = L[i]; j <= R[i]; ++j)
{
fx = Find(E[j].u, 0); fy = Find(E[j].v, 0);
if (fx != fy) f[fx] = fy;
}
}
printf("%d\n", (int)Ans);
return 0;
}

  

[BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】的更多相关文章

  1. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  2. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  3. bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】

    有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...

  4. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  5. bzoj 1016 [JSOI2008]最小生成树计数——matrix tree(相同权值的边为阶段缩点)(码力)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 就是缩点,每次相同权值的边构成的联通块求一下matrix tree.注意gauss里的 ...

  6. BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理

    考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...

  7. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  8. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

  9. 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集

    最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...

随机推荐

  1. careercup-栈与队列 3.6

    3.6 编写程序,按升序对栈进行排序(即最大元素位于栈顶).最多只能使用一个额外的栈存放临时数据,但不得将元素复制到别的数据结构中(如数组).该栈支持如下操作:push.pop.peek和isEmpt ...

  2. 深入理解iframe

    本文并不是一篇iframe API文档讲解,因此想了解iframe API的同学请移步 MDN, 我将在现在浏览器的角度与大家取探讨iframe, 因此,本文中虽然会提及一些iframe在旧浏览器中的 ...

  3. Android开发之意图解析

     android中意图(intent)就是告诉系统要做某件事情.比如要拨打电话或者发送短信. 或者在一个Activity中点击按钮跳转到另外一个activity时也用到意图.意图分为两种:显示意图和隐 ...

  4. PL/SQL Developer 远程连接Oracle数据库

    PL/SQL Developer 远程连接Oracle数据库 网上搜了很多方法,这个可行! 1.    配置服务器tnsnames.ora文件,如果本机上没有安装oracle,可以从安装了oracle ...

  5. 如何打包成jar包自己看呢?

    第一步:选择你要导出的部分 第二步:

  6. IE6 中的最大最小寬度和高度 css 高度 控制(兼容版本)

    /* 最小寬度 */.min_width{min-width:300px; /* sets max-width for IE */ _width:expression(document.body.cl ...

  7. C#中volatile的用法

    恐怕比较一下volatile和synchronized的不同是最容易解释清楚的.volatile是变量修饰符,而synchronized则作用于一段代码或方法:看如下三句get代码: int i1;  ...

  8. 将decimal类型的数值后面的0和.号去掉

    今天在群里面看到有朋友在问如下的需求,想到以前在写项目时也遇到这种处理数值的需求,所以写一个例子贴在博客里. 需求:在许多显示货币值时,可能需要截取掉后面的0,显示小数值或者整型值. 举例:(1)数据 ...

  9. 数据库学习(整理)----6--Oracle如何快速备份和多次备份数表数据

    1.说明:  这里假设一种应用场景! 假设,银行系统中有大量的数据需要及时备份,如何才能快速高效呢! 条件需求: (1).不能设置同步锁(设置的会影响银行正常业务进行!使得银行系统处于维护状态,这是不 ...

  10. a-b(高精度)

    我现在已经是才语言中的一员了,我在此献上今日的佳作——a-b(高精度),以下是我的程序及其注释,欢迎各位来观赏,耶! 程序: #include<stdio.h> #include<s ...