DEEP LEARNING IS THE FUTURE: Q&A WITH NAVEEN RAO OF NERVANA SYSTEMS
DEEP LEARNING IS THE FUTURE: Q&A WITH NAVEEN RAO OF NERVANA SYSTEMS
CME Group was one of several companies taking part in a $20.5 million funding round for the San Diego startup, Nervana Systems. The company specializes in a biologically inspired form of artificial intelligence known as deep learning. Based on neuroscience, the technology uses algorithmic models to learn representation from large datasets. It is presently used in voice command and face recognition capabilities, but Nervana Systems CEO Naveen Rao anticipates its application across a wide range of industries including financial services, agriculture, and medical diagnostics.
Rao began his career as a computer engineer, received a PhD in computational neuroscience, and worked in a neuromorphic design research group at QUALCOMM before founding Nervana Systems in 2014. According to Venturebeat, the company has accumulated a total of $24.4 million to date. Nervana Systems also recently released its Neon deep learning software under an open source license. To learn more about Nervana Systems and the place of deep learning in the global economy, we spoke with Rao. This is an edited version of our conversation.
Most people are now familiar with the idea that data affects everything. What is deep learning, and how is it different?
Deep learning is really the latest iteration of neural network approaches to machine learning problems. Basically we took some very high level abstraction of how neurons work and how neurons purportedly process information and we try to build mathematical models out of it. This is not a new field — people have been doing this since the fifties when people discovered the basis for how information is transmitted in neurons.
Deep learning is the end of the evolutionary process of learning how neural networks learn to represent information and actually find structure within data.
What does Nervana do to make deep learning more accessible?
One thing about deep learning, there are a lot of aspects to it that are difficult to get it to work on real data problems. We’re trying to make that very easy by wrapping software layers around it so that people can safely board its problem spaces.
The other piece – deep learning fundamentally requires a lot of compute resources, and new compute resources that people don’t really have. Right now, it’s in the realm of the Googles, Facebooks, Microsofts of the world, and we want to bring those capabilities to everyone else.

Naveen Rao co-founded Nervana Systems in 2014.
In which industries will deep learning have the most impact in the near future?
In the next 5 to 10 years the world is going to look very different due to these machine learning techniques. But one early area I see that is going to be really important is finance. Regulatory enforcement is something that financial services companies are very interested in and that’s something we’re seeing from multiple places.
Other verticals are agriculture—agriculture is kind of on this tipping point where all of a sudden we’re applying technology to these very old problems. We need to feed the world and we’re trying to figure out new ways to do that using technology.
Medical diagnostic space is something that I personally would love to see – my whole family are MD’s. I would really love to see some of these problems that can become standardized instead of having a doctor somewhere who is the best at reading an X-ray, and if you don’t get in front of his eyes you don’t get the best. We should be able to standardize that and build it into an algorithm. You’re going to have criteria for when a cell looks cancerous or not; we can standardize that and code it to an algorithm so it’s definitive, and not an opinion.
Where are we already seeing these kind of algorithms at work?
Every smartphone out there — Windows phones, Android phones, or iPhones — the voice personal assistants use deep learning to decode your voice, and the reason that these devices now become useful is because of deep learning.
Voice recognition has been around for a long time – even five years ago it was kind of useless. It made so many errors it wasn’t above a line that made it useful yet. But now, I can talk to my phone, I can ask it a question and it gets it right most of the time.
That also frightens some people, how smart machines are becoming. Is that a misconception with artificial intelligence, that it’s a threat?
We’re pretty far away from that. I’ll never say never but at this point in time, there’s not a good path from here to there. The things we’re building now are better tools, they extend our capabilities just like I can’t push a ton of dirt but I can build a bulldozer that will push a ton of dirt.
In the same way, we can make an algorithm sift through 10 million pictures in a few seconds and actually figure out what’s in them, whereas I can’t do that as an individual. It’s more of a tool in my mind; it’s really something that I think will actually make lives better in multiple ways.
Where do you see it having the biggest economic impact?
It’s kind of like what we had at the industrial revolution. We had the mechanization of farming and other industries that were disrupted by tractors and other mechanical implements. We’re going to see labor markets shift away from humans doing what we would now consider mundane tasks but there’s no other way to do them.
An example would be people who have millions of loan contracts sitting on a desk and they literally need to just score them for risk. Sounds like a simple problem but when you start scaling it up to a million different contracts you need a lot of humans to do that and it takes a long time. Something like that we can simply build an algorithm. It’s standardized, it works flawlessly and we can do that in minutes instead of a year.
How did you decide to start Nervana?
In 2007, I quit my job as a computer engineer and went back to school to get a PhD in computational neuroscience. The reason was to understand what computation really means in a biological context.
Looking at visual data and integrating that with sound and smell and touch and all these things; putting it all together into one cohesive version of the world – that’s what our brains do. That’s exactly what we want to do with large datasets.
I was actually working in a neuromorphic design research group in QUALCOMM. Neuromorphic design is basically taking biological inspiration at the lower level, on the circuit level, and trying to build a synthetic machine out of that. That was more of a research project, but I started talking to potential clients who might use our stuff and there’s a lot of growing demand for deep learning.
Now we have the data, we have the computational techniques, which is deep learning, and we have a market need. We have tons of data and we need to make sense of it. Companies need to find insights in the data. With those things coming together was when we launched Nervana.
What are the next steps for Nervana?
With the closing of this round, it gives us the fuel to continue the development process. We’re hiring quite a lot. We’re going to be launching our cloud service to make it accessible for people. The idea is really to bring this state of the art performance and capability to anyone who wants to pay for it on a small scale.
We’re very excited about it because there are certain kinds of techniques or models that people haven’t even tried because it’s just not possible on today’s architectures. For instance, it can take a year for us to train certain algorithms on some large datasets. If it’s going to take a year, no one’s going to do it. But we can literally take those things that would take a year and run them in a day or even hours. We see that opening up a whole new set of possibilities. The next year and a half is going to be very exciting in this field for us.
DEEP LEARNING IS THE FUTURE: Q&A WITH NAVEEN RAO OF NERVANA SYSTEMS的更多相关文章
- 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...
- (转) Deep Learning Research Review Week 2: Reinforcement Learning
Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...
- (转) Deep Learning in a Nutshell: Reinforcement Learning
Deep Learning in a Nutshell: Reinforcement Learning Share: Posted on September 8, 2016by Tim Dettm ...
- A Statistical View of Deep Learning (III): Memory and Kernels
A Statistical View of Deep Learning (III): Memory and Kernels Memory, the ways in which we remember ...
- 课程一(Neural Networks and Deep Learning),第一周(Introduction to Deep Learning)—— 1、经常提及的问题
Frequently Asked Questions Congratulations to be part of the first class of the Deep Learning Specia ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- (转) Awesome - Most Cited Deep Learning Papers
转自:https://github.com/terryum/awesome-deep-learning-papers Awesome - Most Cited Deep Learning Papers ...
- (转) The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...
随机推荐
- CodeFile与CodeBehind的区别
引自:http://blog.163.com/wentworth0119@126/blog/static/17321924220122852720103/ asp.net发布项目之后 存在" ...
- Asp.net上传出现“超过了最大请求长度”的问题解决方法
在开发ASP.NET网站后台管理系统时,我们可能会遇到这样的问题:上传大于4M的文件时,会提示错误:错误信息如下: 1.异常详细信息:超过了最大请求长度. 2.引发异常的方法:Byte[] GetEn ...
- SharePoint 文档库实现文件夹拖放到文档库
打开文档库-> 选择文件夹-> 在Ribbon中选择“库(list)”-> 在右边可以看到打开方式-> 选择用资源管理器打开-> 在新打开的资源管理器中可能实现对文夹的拖 ...
- c#进程间通讯方案之IPC通道
转载:http://www.cnphp.info/csharp-ipc-channel-remoting.html 最近一直纠结与使用多进程还是多线程来构建程序.多线程的方法似乎不错,但是一个进程可承 ...
- 使用PDO持久化连接
无论是何种编程语言,几乎都要经常与各种数据库打交道.不过,众所周知的是,在程序与数据库之间建立连接是一件比较耗费资源的事情,因此编程技术领域的许多专家.前辈们就设想并提出了各种解决方案,以减少不必要的 ...
- Oracle在表上建立自增字段的方法
本方法为使用SEQUENCE(序列) 例如有表temp_test结构为: create table TEMP_TEST ( id number, nm varchar(10), primary k ...
- iOS lanchImage 和icon的设置
1 icon的设置 打开项目中的Assets.xcassets 这里边有一个icon 首先需要有icon 的尺寸 尺寸如下: 29*29 2x 29*29 3x 40*40 2x 40* ...
- 安装flash 插件scaleform出现错误:Scaleform Launch Panel.Launcher.handleDataLoaderIOError(): Loading XML Failedscaleform
经排查发现是Scaleform Launcher.swf报的错 (C:\Users\Administrator\AppData\Local\Adobe\Flash CC\zh_CN\Configura ...
- jQuery 源码分析3: jQuery.fn/ jQuery.prototype
// 建立方法实例,提高方法访问的速度(避免在原型链上搜索) var deletedIds = []; var slice = deletedIds.slice; var concat = delet ...
- Hdu 4514 湫湫系列故事——设计风景线
湫湫系列故事--设计风景线 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total ...