3823: 定情信物

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 108  Solved: 2
[Submit][Status]

Description

都说程序员找不到妹子,可是无人知晓,三生石上竟然还刻着属于小 E 的一笔。

那一天,小 E 穷尽毕生的积蓄,赠与了妹子一个非同寻常的定情信物。那是一个小

小的正方体,但透过它,可以看到过去,可以洞彻天机。

这份信物仿佛一只深邃的眼。当看透它看似简单的外表后,深邃的内心却最是可以

叩击人的灵魂的。不出所料,妹子果然被这个信物超越空间的美所吸引。

“易有太极,是生两仪,两仪生四象,四象生八卦。,八卦定吉凶,吉凶生大业。”

这句箴言在其上得到了完美的诠释。

是的,这正是一个超正方体。

小 E 告诉妹子,他的情意也如这份信物一样深厚。现在妹子想知道,小 E 对她的情

意究竟有几分?

我们知道,点动成线,线动成面,面动成体......即 n 维超立方体可看作由 n-1 维超

立方体沿垂直于它的所有的棱的方向平移得到的立体图形。

我们可以将点看作 0 维超立方体,将直线看作 1 维超立方体,将正方形看作 2 维超

立方体......依此类推。

任何一个 n 维超立方体(n>0)都是由低维的超立方体元素组成的:它的 n-1 维表面

是 n-1 维的超立方体,它的 n-2 维边缘是 n-2 维的超立方体,它的 n-3 维元素是 n-3 维的

超立方体......

小 E 对妹子的情意即为在他的定情信物——K 维超立方体中,含有每一维的元素个

数。由于元素个数可能较大,只需要输出它所包含的每一维元素个数模 P 后的异或和。

Input

两个整数 K、P,详见题目叙述。

Output

一个非负整数,表示小 E 的定情信物所包含的每一维元素个数模 P 后的异或和。注

意:异或和可能会大于 P。

Sample Input

input 1
3 7

Input 2

4 2333

Input 3

12 7723

Sample Output

Output1

3

Output 2

33

Output 3

360

Hint
对于样例2的解释:
一个三维超立方体含有 8 个零维元素、12 个一维元素、6 个二维元素、1 个三维

元素,模 7 后分别为 1,5,6,1,异或和为 1^5^6^1=3。

HINT

对于 100%的数据,N≤10^7,P 为 10^9 内的素数。
 
网上题解1mol多,基本没什么可以过5 3这组数据的。。。。
对于n维的情况,我们可以考虑k维元素的“向量”是由在n维的n个方向任选k个完全定义的,同样的向量有2^(n-i)个,所以是C(n,i)*2^i,yy一下求逆元的方法就行了。
 
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAXN 11000000
typedef long long qword;
int inv[MAXN];
int prime[],topp=-;
bool pflag[MAXN];
qword n,p;
qword pow_mod(qword x,qword y)
{
qword ret=;
while (y)
{
if (y&)ret=ret*x%p;
x=x*x%p;
y>>=;
}
return ret;
}
void init()
{
inv[]=;
for (int i=;i<=n;i++)
{
if (!pflag[i])
{
prime[++topp]=i;
inv[i]=pow_mod(i,p-);
}
for (int j=;j<=topp && (qword)i*prime[j]<MAXN;j++)
{
pflag[i*prime[j]]=true;
inv[i*prime[j]]=(qword)inv[i]*inv[prime[j]]%p;
if (i%prime[j]==)break;
}
}
}
int main()
{
freopen("input.txt","r",stdin);
scanf("%lld%lld",&n,&p);
qword x,y,z;
int i,j,k;
qword ans=;
init();
x=;y=;
ans^=x*y%p;
int totp=;
for (i=;i<=n;i++)
{
x=x*%p;
z=n-i+;
while (z%p==)totp++,z/=p;
y=y*z%p;
z=i;
while (z%p==)totp--,z/=p;
y=y*inv[z%p]%p;
ans^=totp?:x*y%p;
}
printf("%lld\n",ans);
}

bzoj 3823: 定情信物 线性筛逆元的更多相关文章

  1. [BZOJ 3823]定情信物

    题面 定情信物 题解 这题主要考高中物理和数学. 首先定义 \(f[i][j]\) 表示 \(i\) 维超立方体中第 \(j\) 维元素的数量,根据实际意义,我们可以推出递推式: \(f[i][j]= ...

  2. 定情信物(bzoj 3823)

    Description 都说程序员找不到妹子,可是无人知晓,三生石上竟然还刻着属于小 E 的一笔. 那一天,小 E 穷尽毕生的积蓄,赠与了妹子一个非同寻常的定情信物.那是一个小 小的正方体,但透过它, ...

  3. BZOJ 2693: jzptab [莫比乌斯反演 线性筛]

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discu ...

  4. [bzoj 2190][SDOI2008]仪仗队(线性筛欧拉函数)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 分析:就是要线性筛出欧拉函数... 直接贴代码了: memset(ans,,sizeof ...

  5. BZOJ3823 : 定情信物

    n维超立方体有$2^{n-i}C_n^i$个i维元素,于是$O(n)$预处理出1到n的逆元,再$O(n)$计算即可. 注意Trick:P可能小于n,所以要将数字表示成$a\times P^b$的形式. ...

  6. BZOJ 2694: Lcm [莫比乌斯反演 线性筛]

    题意:求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m lcm(i,j)\ : gcd(i,j) 是sf 无平方因子数\) 无平方因子数?搞一个\(\mu(gcd( ...

  7. hdu5673 Robot 卡特兰数+组合数学+线性筛逆元

    Robot Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Subm ...

  8. bzoj 4589: Hard Nim【线性筛+FWT+快速幂】

    T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...

  9. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

随机推荐

  1. Linux--------------安装vsftpd

    1.安装vsftpd        yum install -y vsftpd         yum -y install ftp vsftpd    2.安装vsftpd虚拟用户配置依赖包     ...

  2. gulp 实践

    文档站YDoc 相关注意事项 sass 编译 目录结构 可以直接使用sass编译 ➜ ydoc git:(v2) ✗ sass ./sass/app.scss ./template/source/ap ...

  3. Eclipse启动Tomcat访问不了首页

    Eclipse开发web项目与myEclipse不同: 启动服务器后访问 http:localhost:8080 找不到服务器 想要访问Tomcat首页只需修改Tomcat配置 进入Eclipse双击 ...

  4. 破解C#的readonly只读字段

    破解C#的readonly只读字段 目录 请允许我再唠叨几句const和readonly 修改readonly字段: 计策1:反间计 -- 反射修改 计策2:借刀杀人--调节字段偏移位置的结构体来修改 ...

  5. java.lang.NoClassDefFoundError: com.nostra13.universalimageloader.core.DisplayImageOptions$Builder

    今天在使用Universal-image-loader开源插件的时候,一直出现了这么个错误.原因是在ADT22版本中导入jar包的方式不对. 正确的导入jar包方式: 在adt17的版本之后,导入第三 ...

  6. jQuery 序列化表单 serialize() serializeArray()

    1.serialize()方法 格式:var data = $("form").serialize(); 功能:将表单内容序列化成一个字符串. 这样在ajax提交表单数据时,就不用 ...

  7. eclipse和android studio导入工程的错误

    eclipse中导入工程,需要注意导入的工程是什么,android 工程和java工程是有区别的.如果导入错误了,调起来也比较麻烦.因为入口错了呀. 特别在android studio工程,从其它人的 ...

  8. php中实现精确设置session过期时间的方法

    http://www.jb51.net/article/52309.htm 大多数据情况下我们对于session过期时间使用的是默认设置的时间,而对于一些有特殊要求的情况下我们可以设置一下sessio ...

  9. oracle 11g卸载方法

    在网上查看了很多卸载oracle11g的方法,但是感觉都太复杂了,没有使用,最后查看了很多资料,得到一种比较简单,而且能完全卸载的方法: 在根目录下运行c:\app\Administrator\pro ...

  10. cognos 10.2.2 report studio数字---字符型查询注意事项

    做了一个简单的报表,就是按照员工编号查询员工,其中员工编号是全数字,我们保存在数据库中的是字符型varchar2(10),所以在report studio中做查询就一直报告服务器错误. 其中使用cas ...