Description

聪聪和睿睿最近迷上了一款叫做分裂的游戏。 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子。标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k) 。如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛。胜利者可以拿走所有的巧克力豆! 两人最后决定由聪聪先取豆子,为了能够得到最终的巧克力豆,聪聪自然希望赢得比赛。他思考 了一下,发现在有的情况下,先拿的人一定有办法取胜,但是他不知道对于其他情况是否有必胜 策略,更不知道第一步该如何取。他决定偷偷请教聪明的你,希望你能告诉他,在给定每个瓶子 中的最初豆子数后是否能让自己得到所有巧克力豆,他还希望你告诉他第一步该如何取,并且为 了必胜,第一步有多少种取法? 假定 1 < n < = 21,p[i] < = 10000

Input

输入文件第一行是一个整数t表示测试数据的组数,接下来为t组测试数据(t<=10)。每组测试数据的第一行是瓶子的个数n,接下来的一行有n个由空格隔开的非负整数,表示每个瓶子中的豆子数。

Output

对 于每组测试数据,输出包括两行,第一行为用一个空格两两隔开的三个整数,表示要想赢得游戏,第一步应该选取的3个瓶子的编号i,j,k,如果有多组符合要 求的解,那么输出字典序最小的一组。如果无论如何都无法赢得游戏,那么输出用一个空格两两隔开的三个-1。第二行表示要想确保赢得比赛,第一步有多少种不 同的取法。

Sample Input

2
4
1 0 1 5000
3
0 0 1

Sample Output

0 2 3
1
-1 -1 -1
0
  这道题,了解SG函数就可以发现,对每个巧克力豆求SG函数是可做的,这里先预处理,不过是倒着的。
 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N=;
int sg[N],vis[N*N*N],f[N];
//注意这里mex的值域很大!!!
int T,n,ans,tot; int main(){
freopen("game.in","r",stdin);
freopen("game.out","w",stdout);
int pi,pj,pk;scanf("%d",&T);
for(int i=,p;i<=;i++){
memset(vis,,sizeof(vis));
for(int j=i-;j>=;j--)
for(int k=j;k>=;k--)
vis[sg[j]^sg[k]]=;
for(p=;vis[p];p++);sg[i]=p;
}
while(T--){
scanf("%d",&n);ans=;
for(int i=;i<=n;i++){
scanf("%d",&f[i]);
if(f[i]&)ans^=sg[n-i+];
}
if(ans==)
printf("-1 -1 -1\n0\n");
else{
pi=pj=pk=tot=;
for(int i=n-;i>=;i--)if(f[i])
for(int j=n;j>=i+;j--)
for(int k=n;k>=j;k--)
if((sg[n-i+]^sg[n-j+]^sg[n-k+])==ans)
{tot+=;pi=i-;pj=j-;pk=k-;}
printf("%d %d %d\n%d\n",pi,pj,pk,tot); }
} return ;
}

  思路真的很简单很简单……

博弈论(SG函数):HNOI 2007 分裂游戏的更多相关文章

  1. bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用

    1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 973  Solved: 599[Submit][Status ...

  2. [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】

    题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...

  3. [BZOJ 1874] [BeiJing2009 WinterCamp] 取石子游戏 【博弈论 | SG函数】

    题目链接:BZOJ - 1874 题目分析 这个是一种组合游戏,是许多单个SG游戏的和. 就是指,总的游戏由许多单个SG游戏组合而成,每个SG游戏(也就是每一堆石子)之间互不干扰,每次从所有的单个游戏 ...

  4. [2016北京集训试题6]魔法游戏-[博弈论-sg函数]

    Description Solution 首先,每个节点上的权值可以等价于该节点上有(它的权的二进制位数+1)个石子,每次可以拿若干个石子但不能不拿. 然后就发现这和NIM游戏很像,就计算sg函数em ...

  5. 【GZOI2015】石子游戏 博弈论 SG函数

    题目大意 有\(n\)堆石子,两个人可以轮流取石子.每次可以选择一堆石子,做出下列的其中一点操作: 1.移去整堆石子 2.设石子堆中有\(x\)个石子,取出\(y\)堆石子,其中\(1\leq y&l ...

  6. 【基础操作】博弈论 / SG 函数详解

    博弈死我了……(话说哪个小学生会玩博弈论提到的这类弱智游戏,还取石子) 先推荐两个文章链接:浅谈算法——博弈论(从零开始的博弈论) 博弈论相关知识及其应用 This article was updat ...

  7. 2016多校联合训练1 B题Chess (博弈论 SG函数)

    题目大意:一个n(n<=1000)行,20列的棋盘上有一些棋子,两个人下棋,每回合可以把任意一个棋子向右移动到这一行的离这个棋子最近的空格上(注意这里不一定是移动最后一个棋子),不能移动到棋盘外 ...

  8. POJ 2425 A Chess Game 博弈论 sg函数

    http://poj.org/problem?id=2425 典型的sg函数,建图搜sg函数预处理之后直接求每次游戏的异或和.仍然是因为看不懂题目卡了好久. 这道题大概有两个坑, 1.是搜索的时候vi ...

  9. POJ2425 A Chess Game[博弈论 SG函数]

    A Chess Game Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 3917   Accepted: 1596 Desc ...

随机推荐

  1. Js的History对象

    History回顾 window.history表示window对象的历史记录 window.history的简单回顾 历史记录中前进/后退,移动到指定历史记录点 window.history.bac ...

  2. 【原创教程】虎咽CSS

      上节课我们讲了HTML基础,回顾的事我不干了,因为你可以回头看很多遍,这节课我们来学习下CSS这门艺术的基础知识,一直以来我们都是CSS,CSS那么CSS到底是什么呢,惯例,我又来一层一层把CSS ...

  3. .Net下的进程间的通讯 -- Windows消息队列

    Windows 消息队列(MSMQ),是微软Windows2000以上的操作系统的一个服务,可以提供在计算机间消息的可靠传输,用来在两个进程间进行异步通讯最合适不过了.在.Net中有一个Message ...

  4. 将decimal类型的数值后面的0和.号去掉

    今天在群里面看到有朋友在问如下的需求,想到以前在写项目时也遇到这种处理数值的需求,所以写一个例子贴在博客里. 需求:在许多显示货币值时,可能需要截取掉后面的0,显示小数值或者整型值. 举例:(1)数据 ...

  5. 在 Mac OS X 中建立加密的 Zip 压缩 -- 让机密资料加上密码

    在 Mac OS X 中要压缩档案的話,基本上就用滑鼠点右鍵选「压缩...」就可以制作 Zip 格式的压缩档,很方便.但如果是机密的资料要透过 Email 等管道传送时,常常会需要建立加密的 Zip ...

  6. iOS崩溃报告获取二

    // // JKExceptionHandler.h // JKExceptionHandler // // Created by Jack on 16/9/7. // Copyright © 201 ...

  7. (转) c# ExecuteNonQuery() 返回值 -1

    这是之前我遇到问题,在网上找解决方法时找到的,当时复制到txt文档了,今天整理笔记又看到了,贴出来,便于以后查阅.原文的作者没记住~~ 查询某个表中是否有数据的时候,如果用ExecuteNonQuer ...

  8. 关于正则表达式的转义 PHP

    如正则的函数 preg_replace($patern, $replacement, $content) 等等 其中如果 $content 中要替换 \ 成 /,必须在 $patern中写成 \\\\ ...

  9. winform下mapxtreme2008 v7.0 生成release版提示找不到dll问题

    在winform下基于mapxtreme2008 v7.0 生成了一个地图软件,用debug方式运行无误,但改为release版时提示缺少一大堆dll,如: 无法从C:\Program Files ( ...

  10. 浅谈Exchange 2013开发-如何操作邮件的附件

    因为项目中客户有一个的要求,所以这个Exchange前段时间搞的我很是头疼,没接触过这个东西,但是现在看来,纸老虎一个.希望我的经验可以帮助初次接触它的人少走一些弯路! 简单介绍一下:客户要求在自己的 ...