这是Coursera上《机器学习技法》的课程笔记。

  Aggregation models: mix or combine hypotheses for better performance, and it's a rich family. Aggregation can do better with many (possibly weaker) hypotheses.

  Suppose we have $T$ hypotheses ,denoted by $g_1$, $g_2$, ... ,$g_T$. There are four different approachs to get a appregation model:

1.Select the best one $g_{t_*}$ from validation error $$G(x)=g_{t_*}(x) with t_*=argmin_{t \in \{1,2,...,T\}}E_{val}(g^-_t)$$

2.Mix all hypotheses uniformly $$G(x)=sign(\sum_{t=1}^T1*g_t(x))$$

3.mix all hypotheses non-uniformly $$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad  \alpha_t \geq 0$$

  NOTE: conclude select and mix uniformly.

4.Combine all hypotheses conditionally $$G(x)=sign(\sum_{t=1}^Tq_t(x)*g_t(x)) \quad  with \quad  q_t(x)\geq 0$$

  NOTE: conclude non-uniformly

Why aggregation work?

In the left graph,  we get a strong $G(x)$ by mixing different weak hypotheses uniformly.  In some sense, aggregation can be seen as feature transform.

In the right graph, we get a moderate $G(x)$ by mixing different weak hypotheses uniformly.  In some sense, aggregation can be seen as regularization.

          appgegation type              blending                 learning       
                 uniform        voting/averging     Bagging
             non-uniform                linear      Adaboost
              conditional             stacking       Decision Tree 

Uniform Blending

Classification: $G(x)=sign(\sum_{t=1}^T1*g_t(x))$

Regression:$G(x)=\frac{1}{T}\sum_{t=1}^Tg_t(x)$

And uniformly blending can reduce variance for more stable performance(数学推导可见课件207_handout.pdf).

Linear Blending

Classification:$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad  \alpha_t \geq 0$

Regression:$G(x)=\frac{1}{T}\sum_{t=1}^T\alpha_t*g_t(x) \quad with \quad  \alpha_t \geq 0$

How to choose $\alpha$?  We need get some $\alpha$ to minimize $E_{in}$. $$\mathop {\min }\limits_{\alpha_t\geq0}\frac{1}{N}\sum_{n=1}^Nerr\Big(y_n,\sum_{t=1}^T\alpha_tg_t(x_n)\Big)$$

so $ linear blending = LinModel + hypotheses as transform + constraints$.

  Given $g_1^-$, $g_2^-$, ..., $g_T^-$ from $D_{train}$, transform $(x_n, y_n)$ in $D_{val}$  to $(z_n=\Phi^-(x_n),y_n)$,where $\Phi^-(x)=(g_1^-(x),...,g_T^-(x))$.And

  1. compute $\alpha$ = LinearModel$\Big(\{(z_n,y_n)\}\Big)$
  2. return $G_{LINB}(x)=LinearHypothesis_\alpha(\Phi(x))$

Bootstrap Aggregation(bagging)

Bootstrap sample $\widetilde{D}_t$: resample N examples  from $D$ uniformly with replacement - can also use arbitracy N' instead of N.

bootstrap aggregation:

  consider a physical iterative process that for t=1,2,...,T:

  1. request size-N' data $\widetilde{D}_t$ from bootstrap;
  2. obtain $g_t$ by $\mathcal{A}(\widetilde{D}_t)$, $G=Uniform(\{g_t\})$.

Adaptive Boosting (AdaBoost) Algorithm

Decision Tree

Random Forest

$$RF = bagging +random-subspace C&RT$$

Aggregation Models的更多相关文章

  1. 机器学习技法课之Aggregation模型

    Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...

  2. 机器学习技法-GBDT算法

    课程地址:https://class.coursera.org/ntumltwo-002/lecture 之前看过别人的竞赛视频,知道GBDT这个算法应用十分广泛.林在第八讲,简单的介绍了AdaBoo ...

  3. 机器学习技法:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  4. 机器学习技法笔记:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  5. Django Aggregation聚合 django orm 求平均、去重、总和等常用方法

    Django Aggregation聚合 在当今根据需求而不断调整而成的应用程序中,通常不仅需要能依常规的字段,如字母顺序或创建日期,来对项目进行排序,还需要按其他某种动态数据对项目进行排序.Djng ...

  6. 2:django models Making queries

    这是后面要用到的类 class Blog(models.Model): name = models.CharField(max_length=100) tagline = models.TextFie ...

  7. How to Choose the Best Way to Pass Multiple Models in ASP.NET MVC

    Snesh Prajapati, 8 Dec 2014 http://www.codeproject.com/Articles/717941/How-to-Choose-the-Best-Way-to ...

  8. The Three Models of ASP.NET MVC Apps

    12 June 2012  by Dino Esposito by Dino Esposito   We've inherited from the original MVC pattern a ra ...

  9. Django models对象的select_related方法(减少查询次数)

    表结构 先创建一个新的app python manage.py startapp test01 在settings.py注册一下app INSTALLED_APPS = ( 'django.contr ...

随机推荐

  1. css中var函数

    引言: 在学习elementui的时候看到一个var.css, 其中写的全部都是以--开头的属性,上google查询不是css3新增的属性,于是决定一探究竟 :root { /* Transition ...

  2. 016--JLE JNG(小于等于)

    一.指令格式 条件转移指令 JLE/JNG 格式: JLE/JNG 标号地址 功能: 小于等于/不大于  时转到标号地址 JNG    有符号 不大于         则跳转    //Jump if ...

  3. tomcat - 部署Web应用

    概述 以前,安装李刚的JavaEE里面说的方法部署应用的时候,无意中成功,但是后来每次要录视频的时候,又报错,思来想去,tomcat都重启了好多次了,配置文件也试过很多次了,还是不行.无意中发现了问题 ...

  4. 解决SQL Server的TEXT、IMAGE类型字段的长度限制

    更多资讯.IT小技巧.疑难杂症等等可以关注 艾康享源 微信公众号. 来自为知笔记(Wiz)

  5. JavaScript--Date函数

    1. Date函数 var now = new Date(); 获取当前日期对象 now对象->Date.prototype->Object.prototype 将一个字符串转换为Date ...

  6. addEventListener之handleEvent

    addEventListener() 方法是将指定的事件监听器注册到目标对象上,当该对象触发指定的事件时,指定的回调函数就会被执行.语法: element.addEventListener(type, ...

  7. MapReduce概念(转)

    昨天,我在Xebia印度办公室发表了一个关于MapReduce的演说.演说进行得很顺利,听众们都能够理解MapReduce的概念(根据他们的反馈).我成功地向技术听众们(主要是Java程序员,一些Fl ...

  8. Linux imagemagic(转载)

    原文地址:http://linux.chinaitlab.com/c/803455.html 更多详细使用示例请参考:http://www.ibm.com/developerworks/cn/open ...

  9. 关于PHPstorm 使用技巧

    慢慢更新,一点点积累,都是自己在使用中遇到的问题 设置:(2016.4.15) 1:注释模板,phpstorm 有非常强大的注释模板,可以根据自己的需求随时更改,并设置快捷键,非常方便 新文件注释 P ...

  10. nginx 伪静态大于10个参数 $10

    伪静态大于10个参数   会解析成 $1   与 0 参考:http://zhidao.baidu.com/link?url=kT2tp8ARhIZsrt4XF3LdzjkEq0QTIbvhOj9Ck ...