这是Coursera上《机器学习技法》的课程笔记。

  Aggregation models: mix or combine hypotheses for better performance, and it's a rich family. Aggregation can do better with many (possibly weaker) hypotheses.

  Suppose we have $T$ hypotheses ,denoted by $g_1$, $g_2$, ... ,$g_T$. There are four different approachs to get a appregation model:

1.Select the best one $g_{t_*}$ from validation error $$G(x)=g_{t_*}(x) with t_*=argmin_{t \in \{1,2,...,T\}}E_{val}(g^-_t)$$

2.Mix all hypotheses uniformly $$G(x)=sign(\sum_{t=1}^T1*g_t(x))$$

3.mix all hypotheses non-uniformly $$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad  \alpha_t \geq 0$$

  NOTE: conclude select and mix uniformly.

4.Combine all hypotheses conditionally $$G(x)=sign(\sum_{t=1}^Tq_t(x)*g_t(x)) \quad  with \quad  q_t(x)\geq 0$$

  NOTE: conclude non-uniformly

Why aggregation work?

In the left graph,  we get a strong $G(x)$ by mixing different weak hypotheses uniformly.  In some sense, aggregation can be seen as feature transform.

In the right graph, we get a moderate $G(x)$ by mixing different weak hypotheses uniformly.  In some sense, aggregation can be seen as regularization.

          appgegation type              blending                 learning       
                 uniform        voting/averging     Bagging
             non-uniform                linear      Adaboost
              conditional             stacking       Decision Tree 

Uniform Blending

Classification: $G(x)=sign(\sum_{t=1}^T1*g_t(x))$

Regression:$G(x)=\frac{1}{T}\sum_{t=1}^Tg_t(x)$

And uniformly blending can reduce variance for more stable performance(数学推导可见课件207_handout.pdf).

Linear Blending

Classification:$G(x)=sign(\sum_{t=1}^T\alpha_t*g_t(x)) \quad with \quad  \alpha_t \geq 0$

Regression:$G(x)=\frac{1}{T}\sum_{t=1}^T\alpha_t*g_t(x) \quad with \quad  \alpha_t \geq 0$

How to choose $\alpha$?  We need get some $\alpha$ to minimize $E_{in}$. $$\mathop {\min }\limits_{\alpha_t\geq0}\frac{1}{N}\sum_{n=1}^Nerr\Big(y_n,\sum_{t=1}^T\alpha_tg_t(x_n)\Big)$$

so $ linear blending = LinModel + hypotheses as transform + constraints$.

  Given $g_1^-$, $g_2^-$, ..., $g_T^-$ from $D_{train}$, transform $(x_n, y_n)$ in $D_{val}$  to $(z_n=\Phi^-(x_n),y_n)$,where $\Phi^-(x)=(g_1^-(x),...,g_T^-(x))$.And

  1. compute $\alpha$ = LinearModel$\Big(\{(z_n,y_n)\}\Big)$
  2. return $G_{LINB}(x)=LinearHypothesis_\alpha(\Phi(x))$

Bootstrap Aggregation(bagging)

Bootstrap sample $\widetilde{D}_t$: resample N examples  from $D$ uniformly with replacement - can also use arbitracy N' instead of N.

bootstrap aggregation:

  consider a physical iterative process that for t=1,2,...,T:

  1. request size-N' data $\widetilde{D}_t$ from bootstrap;
  2. obtain $g_t$ by $\mathcal{A}(\widetilde{D}_t)$, $G=Uniform(\{g_t\})$.

Adaptive Boosting (AdaBoost) Algorithm

Decision Tree

Random Forest

$$RF = bagging +random-subspace C&RT$$

Aggregation Models的更多相关文章

  1. 机器学习技法课之Aggregation模型

    Courses上台湾大学林轩田老师的机器学习技法课之Aggregation 模型学习笔记. 混合(blending) 本笔记是Course上台湾大学林轩田老师的<机器学习技法课>的学习笔记 ...

  2. 机器学习技法-GBDT算法

    课程地址:https://class.coursera.org/ntumltwo-002/lecture 之前看过别人的竞赛视频,知道GBDT这个算法应用十分广泛.林在第八讲,简单的介绍了AdaBoo ...

  3. 机器学习技法:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  4. 机器学习技法笔记:11 Gradient Boosted Decision Tree

    Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...

  5. Django Aggregation聚合 django orm 求平均、去重、总和等常用方法

    Django Aggregation聚合 在当今根据需求而不断调整而成的应用程序中,通常不仅需要能依常规的字段,如字母顺序或创建日期,来对项目进行排序,还需要按其他某种动态数据对项目进行排序.Djng ...

  6. 2:django models Making queries

    这是后面要用到的类 class Blog(models.Model): name = models.CharField(max_length=100) tagline = models.TextFie ...

  7. How to Choose the Best Way to Pass Multiple Models in ASP.NET MVC

    Snesh Prajapati, 8 Dec 2014 http://www.codeproject.com/Articles/717941/How-to-Choose-the-Best-Way-to ...

  8. The Three Models of ASP.NET MVC Apps

    12 June 2012  by Dino Esposito by Dino Esposito   We've inherited from the original MVC pattern a ra ...

  9. Django models对象的select_related方法(减少查询次数)

    表结构 先创建一个新的app python manage.py startapp test01 在settings.py注册一下app INSTALLED_APPS = ( 'django.contr ...

随机推荐

  1. datagrid加下拉列表dropdownlist

    datagrid中代码: <asp:datagrid id="dgList" runat="server" ItemStyle-HorizontalAli ...

  2. composer之安装

    最近想要学习下yii框架,所以,就看了下官网,看到了貌似比较依赖composer这个东西,然后我就安装了,但是会有问题,安装不上等等问题,不论是windows还是linux命令行安装,都是因为一个问题 ...

  3. java中判断两个字符串是否相等的问题

    我最近刚学java,今天编程的时候就遇到一个棘手的问题,就是关于判断两个字符串是否相等的问题.在编程中,通常比较两个字符串是否相同的表达式是“==”,但在java中不能这么写.在java中,用的是eq ...

  4. 抓取锁的sql语句-第四次修改

    --完成情况   变量V_BLOCKING_SID 用来动态抓取 产生锁的会话id,输出参数没有任何问题,但是执行报错  标识符无效! CREATE OR REPLACE PROCEDURE SOLV ...

  5. oracle死锁模拟

    环境介绍: 用户test01 创建表tab01,用户test02创建表tab02.Test01 更新tab01不提交,test02 更新表tab02不提交.然后test01 更新test02下的表ta ...

  6. 说说RMAN里的obsolete

    RMAN> report obsolete; RMAN retention policy will be applied to the commandRMAN retention policy ...

  7. iOS9升级后第三方平台无法分享的问题

    最近升级到了Xcode7,在真机调试中发现在初始化微博SDK时程序Crash. 解决办法从微博官网下一个最新的SDK,替换掉工程中的即可. 2.替换微博最新SDK之后成功运行程序,之后发现微信.QQ. ...

  8. 关于SVD(Singular Value Decomposition)的那些事儿

    SVD简介 SVD不仅是一个数学问题,在机器学习领域,有相当多的应用与奇异值都可以扯上关系,比如做feature reduction的PCA,做数据压缩(以图像压缩为代表)的算法,还有做搜索引擎语义层 ...

  9. Oracle的卸载与安装

    今天在做一个CURD的web小应用,为后面使用ExtJS搭建一个后台.因为还没有使用过Oracle数据库,因此今天也特的地的使用oracle数据库作为后台的数据库,也当练习使用oracle. 但是今天 ...

  10. FindBugs的Bug类型及分析

    FindBugs分析记录 Bad Practice: Class defines a clone() method but the class doesn't implement Cloneable. ...