Description

最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律。 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi,第i天的股票卖出价为每股BPi(数据保证对于每个i,都有APi>=BPi),但是每天不能无限制地交易,于是股票交易所规定第i天的一次买入至多只能购买ASi股,一次卖出至多只能卖出BSi股。 另外,股票交易所还制定了两个规定。为了避免大家疯狂交易,股票交易所规定在两次交易(某一天的买入或者卖出均算是一次交易)之间,至少要间隔W天,也就是说如果在第i天发生了交易,那么从第i+1天到第i+W天,均不能发生交易。同时,为了避免垄断,股票交易所还规定在任何时间,一个人的手里的股票数不能超过MaxP。 在第1天之前,lxhgww手里有一大笔钱(可以认为钱的数目无限),但是没有任何股票,当然,T天以后,lxhgww想要赚到最多的钱,聪明的程序员们,你们能帮助他吗?

Input

输入数据第一行包括3个整数,分别是T,MaxP,W。 接下来T行,第i行代表第i-1天的股票走势,每行4个整数,分别表示APi,BPi,ASi,BSi。

Output

输出数据为一行,包括1个数字,表示lxhgww能赚到的最多的钱数。

Sample Input

5 2 0
2 1 1 1
2 1 1 1
3 2 1 1
4 3 1 1
5 4 1 1

Sample Output

3

HINT

对于30%的数据,0 < =W 对于50%的数据,0 < =W 对于100%的数据,0 < =W 
对于所有的数据,1 < =BPi < =APi < =1000,1 < =ASi,BSi < =MaxP

 
题解:
http://blog.csdn.net/wzq_qwq/article/details/46410395
code:
 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
const int maxn=;
const int maxm=;
int n,m,w,ap[maxn],bp[maxn],as[maxn],bs[maxn],f[maxn][maxm],ans,head,tail;
struct Data{
int val,id;
}que[maxn],tmp;
int main(){
read(n),read(m),read(w);
for (int i=;i<=n;i++) read(ap[i]),read(bp[i]),read(as[i]),read(bs[i]);
memset(f,,sizeof(f));
f[][]=;
for (int i=;i<=n;i++){
for (int j=;j<=m;j++) f[i][j]=f[i-][j];
int x=max(i-w-,);
head=,tail=;
for (int j=;j<=m;j++){
while (head<=tail&&que[head].id<max(j-as[i],)) head++;
tmp=(Data){f[x][j]+ap[i]*j,j};
while (head<=tail&&que[tail].val<=tmp.val) tail--;
que[++tail]=tmp;
f[i][j]=max(f[i][j],que[head].val-ap[i]*j);
}
head=,tail=;
for (int j=;j<bs[i];j++){
if (j>m) break;
tmp=(Data){f[x][j]+bp[i]*j,j};
while (head<=tail&&que[tail].val<=tmp.val) tail--;
que[++tail]=tmp;
}
for (int j=;j<=m;j++){
while (head<=tail&&que[head].id<j) head++;
if (j+bs[i]<=m){
tmp=(Data){f[x][j+bs[i]]+bp[i]*(j+bs[i]),j+bs[i]};
while (head<=tail&&que[tail].val<=tmp.val) tail--;
que[++tail]=tmp;
}
f[i][j]=max(f[i][j],que[head].val-bp[i]*j);
}
}
for (int i=;i<=m;i++) ans=max(ans,f[n][i]);
printf("%d\n",ans);
return ;
}

bzoj1855: [Scoi2010]股票交易的更多相关文章

  1. [bzoj1855][Scoi2010]股票交易_动态规划_单调队列

    股票交易 bzoj-1855 Scoi-2010 题目大意:说不明白题意系列++...题目链接 注释:略. 想法:这个题还是挺难的. 动态规划没跑了 状态:dp[i][j]表示第i天手里有j个股票的最 ...

  2. BZOJ1855 [Scoi2010]股票交易 【单调队列优化dp】

    题目链接 BZOJ1855 题解 设\(f[i][j]\)表示第\(i\)天结束时拥有\(j\)张股票时的最大收益 若\(i \le W\),显然在这之前不可能有交易 \[f[i][j] = max\ ...

  3. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  4. 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)

    传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...

  5. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  6. BZOJ1855 [Scoi2010]股票交易[单调队列dp]

    题 题面有点复杂,不概括了. 后面的状态有前面的最优解获得大致方向是dp.先是瞎想了个$f[i][j]$表示第$i$天手里有$j$张股票时最大收入(当天无所谓买不买). 然后写了一个$O(n^4)$状 ...

  7. 洛谷P2569 (BZOJ1855)[SCOI2010]股票交易 【单调队列优化DP】

    Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价 ...

  8. 【BZOJ1855】[Scoi2010]股票交易 DP+单调队列

    [BZOJ1855][Scoi2010]股票交易 Description 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预 ...

  9. 【BZOJ1855】股票交易(动态规划,单调队列)

    [BZOJ1855]股票交易(动态规划,单调队列) 题面 BZOJ 题解 很显然,状态之和天数以及当天剩余的股票数有关 设\(f[i][j]\)表示第\(i\)天进行了交易,剩余股票数为\(j\)的最 ...

随机推荐

  1. BZOJ2253 2010 Beijing wc 纸箱堆叠 CDQ分治

    这题之前度娘上没有CDQ分治做法,gerwYY出来以后写了一个.不过要sort3遍,常数很大. gerw说可以类似划分树的思想优化复杂度,但是蒟蒻目前不会划分树(会了主席树就懒得去弄了). 嗯 将me ...

  2. js判断input输入框为空时遇到的问题 弹窗后,光标没有定位到输入框,而是直接执行我的处理页面程序

    无论是会员注册还是提交订单,我们都要使用到form表单,此时我们在处理数据时,就要判断用户填写的信息.一次是直接通过js判断input输入框是否没有填信息,然后在后台处理文件中通过过滤字符串后再次判断 ...

  3. RGB的三维模型与渐变色-颜色系列之一

    一.前言 以下与颜色相关的日志记录了俺学习颜色的有关容,限于编写时的水平,难免存在缺点与错误,希望得到朋友.同行和前辈的指教,非常感谢.1.  RGB的三维模型与渐变色-颜色系列之一2.  <颜 ...

  4. ios从相册:摄像头中获取视频

    ios从相册/摄像头中获取视频 如何从相册中获取视频 使用的是一个和获取照片相同的类UIImagePickerController //相册中获取视频 - (IBAction)clickViedoOF ...

  5. android开发之service详解

    service作为android的四大组件之一,其重要性可想而知,在开发中,我们经常把一些不需要与用户进行交互的工作放在service中来完成,service运行在后台,这样有些人可能会产生错觉,以为 ...

  6. [iOS 开发] app无法访问本地相册,且不显示在设置 -隐私 - 照片中

    近几天在使用iOS8的Photos Framework访问本地相册时,app即不会弹出是否允许访问提示框,也无法显示在iPhone的设置-隐私-照片的访问列表中,代码如下: PHAuthorizati ...

  7. 初识 Angular 体会

    一句话描述:一个前端的类似MVC框架的JS库 刚接触2天,刚一看感觉和asp.net mvc能实现的功能有点重复. 虽然asp.net的表单验证,Razor语法使其在前端开发有较大提升,但要实现比较高 ...

  8. Gprinter Android SDK V2.0 使用说明

    佳博特约经销商,此店购买的打印机问题优先解决哟 https://shop107172033.taobao.com/index.htm?spm=2013.1.w5002-9520741823.2.V1p ...

  9. CentOS 7重装mysql编译过程报错解决方法

    错误记录: [ 82%] Building C object libmysql/CMakeFiles/clientlib.dir/__/sql-common/client.c.o/usr/local/ ...

  10. oracle数组学习资料

    --oracle数组,所谓数组就是  字段的 个数,数组应该很有用 --可变数组 declare  type v_ar is varray(10) of varchar2(30);   my_ar v ...