题目链接:BZOJ - 2007

题目分析

首先,左上角的高度是 0 ,右下角的高度是 1。那么所有点的高度一定要在 0 与 1 之间。然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 来替换,获得同样的效果。

虽然输出的答案要求是四舍五入到整数,但其实答案就是一个整数!

那么高度就一定是 0 或 1 了,并且还有一点,所有选 0 的点都连通,所有选 1 的点都联通。因为如果一个选 0 的点被选 1 的点包围,那么它选 1 更优。

于是整个图中所有的点分成了与左上角相连的集合 A ,与右下角相连的集合 B 。从集合 A 向 B 的边权会计入答案。这就是最小割模型。

这是一个规则的平面图,平面图最小割等于对偶图最短路

建立对偶图:

1)增加一条从 S 到 T 的边,成为 ST 边。这条边把原图中外围无限大的平面部分分割成了一个有限部分 S’ 和无限部分 T’。S’ 与 T’ 就是对偶图的起点和终点。

2)将平面的每个部分看做一个虚拟点,每条边对应一条连接虚拟点的边。但是 ST 边不对应对偶图中的边。

对偶图的一条最短路就对应了原图的一个最小割。

原图的每一条单向边对应对偶图的边的方向可以画个图帮助确定。可以看看从 S’ 到 T’ 的路径中哪些方向的边计入最小割答案,也应是最短路答案。

写 dijkstra !卡 SPFA!

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue> using namespace std; const int MaxN = 500 + 5, INF = 999999999; int n, S, T;
int Map[MaxN][MaxN][5], d[MaxN * MaxN]; bool Visit[MaxN * MaxN]; inline int Calc(int x, int y) {return (x - 1) * n + y;} struct Edge
{
int v, w;
Edge *Next;
} E[MaxN * MaxN * 4], *P = E, *Point[MaxN * MaxN]; inline void AddEdge(int x, int y, int z) {
++P; P -> v = y; P -> w = z;
P -> Next = Point[x]; Point[x] = P;
} struct ES
{
int x, y;
ES() {}
ES(int a, int b) {
x = a; y = b;
}
}; struct Cmp
{
bool operator () (ES e1, ES e2) {
return e1.y > e2.y;
}
}; priority_queue<ES, vector<ES>, Cmp> Q; int main()
{
scanf("%d", &n);
//Input data...
for (int i = 1; i <= n + 1; ++i)
for (int j = 1; j <= n; ++j)
scanf("%d", &Map[i][j][0]);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n + 1; ++j)
scanf("%d", &Map[i][j][1]);
for (int i = 1; i <= n + 1; ++i)
for (int j = 2; j <= n + 1; ++j)
scanf("%d", &Map[i][j][2]);
for (int i = 2; i <= n + 1; ++i)
for (int j = 1; j <= n + 1; ++j)
scanf("%d", &Map[i][j][3]);
//Input done...
S = n * n + 1; T = n * n + 2;
for (int i = 1; i <= n + 1; ++i) {
for (int j = 1; j <= n + 1; ++j) {
if (j <= n) {
if (i == 1) AddEdge(Calc(i, j), T, Map[i][j][0]);
else if (i == n + 1) AddEdge(S, Calc(i - 1, j), Map[i][j][0]);
else AddEdge(Calc(i, j), Calc(i - 1, j), Map[i][j][0]);
}
if (j > 1) {
if (i == 1) AddEdge(T, Calc(i, j - 1), Map[i][j][2]);
else if (i == n + 1) AddEdge(Calc(i - 1, j - 1), S, Map[i][j][2]);
else AddEdge(Calc(i - 1, j - 1), Calc(i, j - 1), Map[i][j][2]);
}
if (i <= n) {
if (j == 1) AddEdge(S, Calc(i, j), Map[i][j][1]);
else if (j == n + 1) AddEdge(Calc(i, j - 1), T, Map[i][j][1]);
else AddEdge(Calc(i, j - 1), Calc(i, j), Map[i][j][1]);
}
if (i > 1) {
if (j == 1) AddEdge(Calc(i - 1, j), S, Map[i][j][3]);
else if (j == n + 1) AddEdge(T, Calc(i - 1, j - 1), Map[i][j][3]);
else AddEdge(Calc(i - 1, j), Calc(i - 1, j - 1), Map[i][j][3]);
}
}
}
//Build_Edge done...
memset(Visit, 0, sizeof(Visit));
for (int i = 1; i <= T; ++i) d[i] = INF;
d[S] = 0;
while (!Q.empty()) Q.pop();
ES Now;
for (int i = 1; i <= T; ++i) Q.push(ES(i, d[i]));
while (!Q.empty()) {
Now = Q.top(); Q.pop();
if (Visit[Now.x]) continue;
if (Now.x == T) break;
Visit[Now.x] = true;
for (Edge *j = Point[Now.x]; j; j = j -> Next) {
if (d[Now.x] + j -> w < d[j -> v]) {
d[j -> v] = d[Now.x] + j -> w;
Q.push(ES(j -> v, d[j -> v]));
}
}
}
printf("%d\n", d[T]);
return 0;
}

  

[BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】的更多相关文章

  1. bzoj 2007: [Noi2010]海拔【最小割+dijskstra】

    上来就跑3e5的最大流--脑子抽了 很容易看出,每个地方的海拔都是0或1因为再高了没有意义,又,上去下来再上去没有意义,所以最后一定是从s连着一片0,剩下连着t一片1,然后有贡献的就是01交接的那些边 ...

  2. Vijos1734 NOI2010 海拔 平面图最小割

    建立平面图的对偶图,把最小割转化成最短路问题 Dijkstra算法堆优化 (被输入顺序搞WA了好几次T_T) #include <cstdio> #include <cstring& ...

  3. bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)

    bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj  luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...

  4. 【BZOJ1001】狼抓兔子(平面图最小割转最短路)

    题意:有一张平面图,求它的最小割.N,M.表示网格的大小,N,M均小于等于1000. 左上角点为(1,1),右下角点为(N,M).有以下三种类型的道路  1:(x,y)<==>(x+1,y ...

  5. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  6. BZOJ 2007 海拔(平面图最小割转对偶图最短路)

    首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...

  7. BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路

    问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...

  8. BZOJ 2007: [Noi2010]海拔

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2410  Solved: 1142[Submit][Status] ...

  9. 洛谷P2046 [NOI2010]海拔(最小割,平面图转对偶图)

    传送门 不明白为什么大佬们一眼就看出这是最小割…… 所以总而言之这就是一个最小割我也不知道为什么 然后边数太多直接跑会炸,所以要把平面图转对偶图,然后跑一个最短路即可 至于建图……请看代码我实在无能为 ...

随机推荐

  1. Eclipse如何生成带有自定tag的Java Doc

    1. 选择要生成Java Doc的工程,单击鼠标右键,在弹出菜单中选择[Export],会弹出以下对话框: 2. 选择[Java]--->[Javadoc],点击[Next]按钮,弹出以下对话框 ...

  2. linux_2.6内核内存缓冲与I/O调度机制:

    http://blog.csdn.net/kaiwii/article/details/7030178 到底是BIO还是BH?答案是BIO与BH

  3. Xcode常见报错及解决办法

    报错一: 在iOS7的真机运行时,弹出错误:App installation failed. There was an internal API error. 如图 解决办法: 在Xcode -> ...

  4. Java设计模式02:常用设计模式之工厂模式(创建型模式)

    一.工厂模式主要是为创建对象提供过渡接口,以便将创建对象的具体过程屏蔽隔离起来,达到提高灵活性的目的.  工厂模式在<Java与模式>中分为三类: 1)简单工厂模式(Simple Fact ...

  5. linux下面安装和配置nginx

    下载nginx-1.0.2.tar.gz wget nginx-1.0.2.tar.gz 解压 nginx-1.0.2.tar.gz tar -xzvf nginx-1.0.2.tar.gz 配置安装 ...

  6. gamit10.6问题汇总

    1.在处理精密星历时,提示:old version of file not supported (name svnav.dat) 解决办法:在gamit10.5中不会出现这个问题,10.6中的官方文档 ...

  7. PHP 开启报错机制

    屏蔽PHP错误提示 方法一:在有可能出错的函数前加@,然后or die("") 如: @mysql_connect(...) or die("Database Conne ...

  8. 获取Android studio中的SHA1

    因为想要弄一下百度地图. 然后要申请一个key. 需要SHA1. 按window键 +R 输入cmd 进入C:\Users\Administrator路径 输入cd .android,进行.andro ...

  9. iOS打包ipa安装包的流程

    应用的发布也分两种 一种是.打包成ipa上传到国内第3方软件市场,当用户的手机已经JailBreak时,双击下载的ipa文件就可以安装软件 (ipa同android的apk包一样,实质是一个压缩包) ...

  10. Missing iOS Distribution signing identity问题解决

    问题描述 打包上传APPStore  Xcode报以下错误:Missing iOS Distribution signing identity for XXXXXX 查看证书后发现,Develop证书 ...