题目链接:BZOJ - 2007

题目分析

首先,左上角的高度是 0 ,右下角的高度是 1。那么所有点的高度一定要在 0 与 1 之间。然而选取 [0, 1] 的任何一个实数,都可以用整数 0 或 1 来替换,获得同样的效果。

虽然输出的答案要求是四舍五入到整数,但其实答案就是一个整数!

那么高度就一定是 0 或 1 了,并且还有一点,所有选 0 的点都连通,所有选 1 的点都联通。因为如果一个选 0 的点被选 1 的点包围,那么它选 1 更优。

于是整个图中所有的点分成了与左上角相连的集合 A ,与右下角相连的集合 B 。从集合 A 向 B 的边权会计入答案。这就是最小割模型。

这是一个规则的平面图,平面图最小割等于对偶图最短路

建立对偶图:

1)增加一条从 S 到 T 的边,成为 ST 边。这条边把原图中外围无限大的平面部分分割成了一个有限部分 S’ 和无限部分 T’。S’ 与 T’ 就是对偶图的起点和终点。

2)将平面的每个部分看做一个虚拟点,每条边对应一条连接虚拟点的边。但是 ST 边不对应对偶图中的边。

对偶图的一条最短路就对应了原图的一个最小割。

原图的每一条单向边对应对偶图的边的方向可以画个图帮助确定。可以看看从 S’ 到 T’ 的路径中哪些方向的边计入最小割答案,也应是最短路答案。

写 dijkstra !卡 SPFA!

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue> using namespace std; const int MaxN = 500 + 5, INF = 999999999; int n, S, T;
int Map[MaxN][MaxN][5], d[MaxN * MaxN]; bool Visit[MaxN * MaxN]; inline int Calc(int x, int y) {return (x - 1) * n + y;} struct Edge
{
int v, w;
Edge *Next;
} E[MaxN * MaxN * 4], *P = E, *Point[MaxN * MaxN]; inline void AddEdge(int x, int y, int z) {
++P; P -> v = y; P -> w = z;
P -> Next = Point[x]; Point[x] = P;
} struct ES
{
int x, y;
ES() {}
ES(int a, int b) {
x = a; y = b;
}
}; struct Cmp
{
bool operator () (ES e1, ES e2) {
return e1.y > e2.y;
}
}; priority_queue<ES, vector<ES>, Cmp> Q; int main()
{
scanf("%d", &n);
//Input data...
for (int i = 1; i <= n + 1; ++i)
for (int j = 1; j <= n; ++j)
scanf("%d", &Map[i][j][0]);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= n + 1; ++j)
scanf("%d", &Map[i][j][1]);
for (int i = 1; i <= n + 1; ++i)
for (int j = 2; j <= n + 1; ++j)
scanf("%d", &Map[i][j][2]);
for (int i = 2; i <= n + 1; ++i)
for (int j = 1; j <= n + 1; ++j)
scanf("%d", &Map[i][j][3]);
//Input done...
S = n * n + 1; T = n * n + 2;
for (int i = 1; i <= n + 1; ++i) {
for (int j = 1; j <= n + 1; ++j) {
if (j <= n) {
if (i == 1) AddEdge(Calc(i, j), T, Map[i][j][0]);
else if (i == n + 1) AddEdge(S, Calc(i - 1, j), Map[i][j][0]);
else AddEdge(Calc(i, j), Calc(i - 1, j), Map[i][j][0]);
}
if (j > 1) {
if (i == 1) AddEdge(T, Calc(i, j - 1), Map[i][j][2]);
else if (i == n + 1) AddEdge(Calc(i - 1, j - 1), S, Map[i][j][2]);
else AddEdge(Calc(i - 1, j - 1), Calc(i, j - 1), Map[i][j][2]);
}
if (i <= n) {
if (j == 1) AddEdge(S, Calc(i, j), Map[i][j][1]);
else if (j == n + 1) AddEdge(Calc(i, j - 1), T, Map[i][j][1]);
else AddEdge(Calc(i, j - 1), Calc(i, j), Map[i][j][1]);
}
if (i > 1) {
if (j == 1) AddEdge(Calc(i - 1, j), S, Map[i][j][3]);
else if (j == n + 1) AddEdge(T, Calc(i - 1, j - 1), Map[i][j][3]);
else AddEdge(Calc(i - 1, j), Calc(i - 1, j - 1), Map[i][j][3]);
}
}
}
//Build_Edge done...
memset(Visit, 0, sizeof(Visit));
for (int i = 1; i <= T; ++i) d[i] = INF;
d[S] = 0;
while (!Q.empty()) Q.pop();
ES Now;
for (int i = 1; i <= T; ++i) Q.push(ES(i, d[i]));
while (!Q.empty()) {
Now = Q.top(); Q.pop();
if (Visit[Now.x]) continue;
if (Now.x == T) break;
Visit[Now.x] = true;
for (Edge *j = Point[Now.x]; j; j = j -> Next) {
if (d[Now.x] + j -> w < d[j -> v]) {
d[j -> v] = d[Now.x] + j -> w;
Q.push(ES(j -> v, d[j -> v]));
}
}
}
printf("%d\n", d[T]);
return 0;
}

  

[BZOJ 2007] [Noi2010] 海拔 【平面图最小割(对偶图最短路)】的更多相关文章

  1. bzoj 2007: [Noi2010]海拔【最小割+dijskstra】

    上来就跑3e5的最大流--脑子抽了 很容易看出,每个地方的海拔都是0或1因为再高了没有意义,又,上去下来再上去没有意义,所以最后一定是从s连着一片0,剩下连着t一片1,然后有贡献的就是01交接的那些边 ...

  2. Vijos1734 NOI2010 海拔 平面图最小割

    建立平面图的对偶图,把最小割转化成最短路问题 Dijkstra算法堆优化 (被输入顺序搞WA了好几次T_T) #include <cstdio> #include <cstring& ...

  3. bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)

    bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj  luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...

  4. 【BZOJ1001】狼抓兔子(平面图最小割转最短路)

    题意:有一张平面图,求它的最小割.N,M.表示网格的大小,N,M均小于等于1000. 左上角点为(1,1),右下角点为(N,M).有以下三种类型的道路  1:(x,y)<==>(x+1,y ...

  5. BZOJ.2007.[NOI2010]海拔(最小割 对偶图最短路)

    题目链接 想一下能猜出,最优解中海拔只有0和1,且海拔相同的点都在且只在1个连通块中. 这就是个平面图最小割.也可以转必须转对偶图最短路,不然只能T到90分了..边的方向看着定就行. 不能忽略回去的边 ...

  6. BZOJ 2007 海拔(平面图最小割转对偶图最短路)

    首先注意到,把一个点的海拔定为>1的数是毫无意义的.实际上,可以转化为把这些点的海拔要么定为0,要么定为1. 其次,如果一个点周围的点的海拔没有和它相同的,那么这个点的海拔也是可以优化的,即把这 ...

  7. BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路

    问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...

  8. BZOJ 2007: [Noi2010]海拔

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2410  Solved: 1142[Submit][Status] ...

  9. 洛谷P2046 [NOI2010]海拔(最小割,平面图转对偶图)

    传送门 不明白为什么大佬们一眼就看出这是最小割…… 所以总而言之这就是一个最小割我也不知道为什么 然后边数太多直接跑会炸,所以要把平面图转对偶图,然后跑一个最短路即可 至于建图……请看代码我实在无能为 ...

随机推荐

  1. 【BZOJ1833】【ZJOI2010】数字计数 数位DP

    链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网 ...

  2. [RxJS] Filtering operators: distinct and distinctUntilChanged

    Operator distinct() and its variants are an important type of Filtering operator. This lessons shows ...

  3. [AngularJS + Webpack] Production Setup

    Using Angular with webpack makes the production build a breeze. Simply alter your webpack configurat ...

  4. 使用gulp在开发过程中合理导出zip文件

    最近一段时间一直在做桌面混合应用,跟以往做web端不同的是,无法再通过在浏览器上输入内部的域名来随时跟踪开发版本的状况了,只能通过打包代码让产品或领导随时跟踪进度. 这里就涉及到一些问题了: 1,需要 ...

  5. (转载)linux那点事儿(上)

    原文地址:http://www.cnblogs.com/fnng/archive/2012/03/19/2407162.html 本文只是转载供自己学习之用 本文算是学linux的学习笔记吧!其实li ...

  6. 提取DLL类库代码

    @SET destFolder=.\bin@XCOPY /I /Y %SYSTEMDRIVE%\WINDOWS\assembly\GAC_MSIL\Microsoft.ReportViewer.Pro ...

  7. block没那么难(三):block和对象的内存管理

    本系列博文总结自<Pro Multithreading and Memory Management for iOS and OS X with ARC> 在上一篇文章中,我们讲了很多关于 ...

  8. 在进行页面的DIV CSS排版时,遇到IE6(当然有时Firefox下也会偶遇)浏览器中的图片元素img下出现多余空白的问题绝对是常见的对于该问题的解决方法也是“见机行事”。

    当一个img标签没得图片时,在firox中,即使给img标签设置了固定高度和宽度,img标签还是不会站位: 解决方法一:直接将img设置为块状元素:即,设置img为“display:block;”.在 ...

  9. Log4j 2.0 使用说明

      原文地址:http://blog.csdn.net/welcome000yy/article/details/7962447 Log4j 2.0 使用说明(1) 之HelloWorld 最近刚接触 ...

  10. J2EE 读取文件路径

    在J2ee中实现java类读取webcontent/web-inf/config.xml的实现代码 ,其中../config.xml相对于classes的路径 java.net.URL url = t ...