【Docker】使用Docker Client和Docker Go SDK为容器分配GPU资源
背景
深度学习的环境配置通常是一项比较麻烦的工作,尤其是在多个用户共享的服务器上。虽然conda集成了virtualenv这样的工具用来隔离不同的依赖环境,但这种解决方案仍然没办法统一地分配计算资源。现在,我们可以通过容器技术为每个用户创建一个属于他们自己的容器,并为容器分配相应的计算资源。目前市面上基于容器的深度学习平台产品已经有很多了,比如超益集伦的AiMax。这款产品本身集成了非常多的功能,但如果你只是需要在容器内调用一下GPU,可以参考下面的步骤。
使用 Docker Client 调用 GPU
依赖安装
docker run --gpu
命令依赖于 nvidia Linux 驱动和 nvidia container toolkit,如果你想查看安装文档请点击这里,本节的下文只是安装文档的翻译和提示。
在Linux服务器上安装nvidia驱动非常简单,如果你安装了图形化界面的话直接在Ubuntu的“附加驱动”应用中安装即可,在nvidia官网上也可以下载驱动。
接下来就是安装nvidia container toolkit,我们的服务器需要满足一些先决条件:
GNU/Linux x86_64 内核版本 > 3.10
Docker >= 19.03 (注意不是Docker Desktop,如果你想在自己的台式机上使用toolkit,请安装Docker Engine而不是Docker Desktop,因为Desktop版本都是运行在虚拟机之上的)
NVIDIA GPU 架构 >= Kepler (目前RTX20系显卡是图灵架构,RTX30系显卡是安培架构)
NVIDIA Linux drivers >= 418.81.07
然后就可以正式地在Ubuntu或者Debian上安装NVIDIA Container Toolkit,如果你想在 CentOS 上或者其他 Linux 发行版上安装,请参考官方的安装文档。
安装 Docker
$ curl https://get.docker.com | sh \
&& sudo systemctl --now enable docker
当然,这里安装完成后请参考官方的安装后需要执行的一系列操作。如果安装遇到问题,请参照官方的安装文档。
安装 NVIDIA Container Toolkit¶
设置 Package Repository和GPG Key
$ distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
请注意:如果你想安装 NVIDIA Container Toolkit 1.6.0 之前的版本,你应该使用 nvidia-docker repository 而不是上方的 libnvidia-container repositories。
如果遇到问题请直接参考安装手册
安装 nvidia-docker2 应该会自动安装libnvidia-container-tools
libnvidia-container1
等依赖包,如果没有安装可以手动安装
完成前面步骤后安装 nvidia-docker2
$ sudo apt update
$ sudo apt install -y nvidia-docker2
重启 Docker Daemon
$ sudo systemctl restart docker
接下来你就可以通过运行一个CUDA容器测试下安装是否正确。
docker run --rm --gpus all nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi
Shell 中显示的应该类似于下面的输出:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.51.06 Driver Version: 450.51.06 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 On | 00000000:00:1E.0 Off | 0 |
| N/A 34C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
--gpus
用法
注意,如果你安装的是 nvidia-docker2 的话,它在安装时就已经在 Docker 中注册了 NVIDIA Runtime。如果你安装的是 nvidia-docker ,请根据官方文档向Docker注册运行时。
如果你有任何疑问,请移步本节参考的文档
可以使用以 Docker 开头的选项或使用环境变量将 GPU 指定给 Docker CLI。此变量控制在容器内可访问哪些 GPU。
--gpus
NVIDIA_VISIBLE_DEVICES
可能的值 | 描述 |
---|---|
0,1,2 或者 GPU-fef8089b |
逗号分割的GPU UUID(s) 或者 GPU 索引 |
all |
所有GPU都可被容器访问,默认值 |
none |
不可访问GPU,但可以使用驱动提供的功能 |
void 或者 empty 或者 unset |
nvidia-container-runtime will have the same behavior as (i.e. neither GPUs nor capabilities are exposed)runc |
使用该选项指定 GPU 时,应使用该参数。参数的格式应封装在单引号中,后跟要枚举到容器的设备的双引号。例如:将 GPU 2 和 3 枚举到容器。
--gpus '"device=2,3"'
使用 NVIDIA_VISIBLE_DEVICES 变量时,可能需要设置
--runtime nvidia
除非已设置为默认值。
设置一个启用CUDA支持的容器
$ docker run --rm --gpus all nvidia/cuda nvidia-smi
指定 nvidia 作为运行时,并指定变量
NVIDIA_VISIBLE_DEVICES
$ docker run --rm --runtime=nvidia \
-e NVIDIA_VISIBLE_DEVICES=all nvidia/cuda nvidia-smi
为启动的容器分配2个GPU
$ docker run --rm --gpus 2 nvidia/cuda nvidia-smi
为容器指定使用索引为1和2的GPU
$ docker run --gpus '"device=1,2"' \
nvidia/cuda nvidia-smi --query-gpu=uuid --format=csv
uuid
GPU-ad2367dd-a40e-6b86-6fc3-c44a2cc92c7e
GPU-16a23983-e73e-0945-2095-cdeb50696982
也可以使用
NVIDIA_VISIBLE_DEVICES
$ docker run --rm --runtime=nvidia \
-e NVIDIA_VISIBLE_DEVICES=1,2 \
nvidia/cuda nvidia-smi --query-gpu=uuid --format=csv
uuid
GPU-ad2367dd-a40e-6b86-6fc3-c44a2cc92c7e
GPU-16a23983-e73e-0945-2095-cdeb50696982
使用
nvidia-smi
查询 GPU UUID 然后将其指定给容器$ nvidia-smi -i 3 --query-gpu=uuid --format=csv
uuid
GPU-18a3e86f-4c0e-cd9f-59c3-55488c4b0c24
docker run --gpus device=GPU-18a3e86f-4c0e-cd9f-59c3-55488c4b0c24 \
nvidia/cuda nvidia-smi
关于在容器内使用驱动程序的功能的设置,以及其他设置请参阅这里。
使用 Docker Go SDK 为容器分配 GPU
使用 NVIDIA/go-nvml
获取 GPU 信息
NVIDIA/go-nvml
提供NVIDIA Management Library API (NVML) 的Go语言绑定。目前仅支持Linux,仓库地址。
下面的演示代码获取了 GPU 的各种信息,其他功能请参考 NVML 和 go-nvml 的官方文档。
package main
import (
"fmt"
"github.com/NVIDIA/go-nvml/pkg/nvml"
"log"
)
func main() {
ret := nvml.Init()
if ret != nvml.SUCCESS {
log.Fatalf("Unable to initialize NVML: %v", nvml.ErrorString(ret))
}
defer func() {
ret := nvml.Shutdown()
if ret != nvml.SUCCESS {
log.Fatalf("Unable to shutdown NVML: %v", nvml.ErrorString(ret))
}
}()
count, ret := nvml.DeviceGetCount()
if ret != nvml.SUCCESS {
log.Fatalf("Unable to get device count: %v", nvml.ErrorString(ret))
}
for i := 0; i < count; i++ {
device, ret := nvml.DeviceGetHandleByIndex(i)
if ret != nvml.SUCCESS {
log.Fatalf("Unable to get device at index %d: %v", i, nvml.ErrorString(ret))
}
// 获取 UUID
uuid, ret := device.GetUUID()
if ret != nvml.SUCCESS {
log.Fatalf("Unable to get uuid of device at index %d: %v", i, nvml.ErrorString(ret))
}
fmt.Printf("GPU UUID: %v\n", uuid)
name, ret := device.GetName()
if ret != nvml.SUCCESS {
log.Fatalf("Unable to get name of device at index %d: %v", i, nvml.ErrorString(ret))
}
fmt.Printf("GPU Name: %+v\n", name)
memoryInfo, _ := device.GetMemoryInfo()
fmt.Printf("Memory Info: %+v\n", memoryInfo)
powerUsage, _ := device.GetPowerUsage()
fmt.Printf("Power Usage: %+v\n", powerUsage)
powerState, _ := device.GetPowerState()
fmt.Printf("Power State: %+v\n", powerState)
managementDefaultLimit, _ := device.GetPowerManagementDefaultLimit()
fmt.Printf("Power Managment Default Limit: %+v\n", managementDefaultLimit)
version, _ := device.GetInforomImageVersion()
fmt.Printf("Info Image Version: %+v\n", version)
driverVersion, _ := nvml.SystemGetDriverVersion()
fmt.Printf("Driver Version: %+v\n", driverVersion)
cudaDriverVersion, _ := nvml.SystemGetCudaDriverVersion()
fmt.Printf("CUDA Driver Version: %+v\n", cudaDriverVersion)
computeRunningProcesses, _ := device.GetGraphicsRunningProcesses()
for _, proc := range computeRunningProcesses {
fmt.Printf("Proc: %+v\n", proc)
}
}
fmt.Println()
}
使用 Docker Go SDK 为容器分配 GPU
首先需要用的的是 ContainerCreate
API
// ContainerCreate creates a new container based in the given configuration.
// It can be associated with a name, but it's not mandatory.
func (cli *Client) ContainerCreate(
ctx context.Context,
config *container.Config,
hostConfig *container.HostConfig,
networkingConfig *network.NetworkingConfig,
platform *specs.Platform,
containerName string) (container.ContainerCreateCreatedBody, error)
这个 API 中需要很多用来指定配置的 struct, 其中用来请求 GPU 设备的是 container.HostConfig
这个 struct 中的 Resources
,它的类型是 container.Resources
,而在它的里面保存的是 container.DeviceRequest
这个结构体的切片,这个变量会被 GPU 设备的驱动使用。
cli.ContainerCreate API 需要 ---------> container.HostConfig{
Resources: container.Resources{
DeviceRequests: []container.DeviceRequest {
{
Driver: "nvidia",
Count: 0,
DeviceIDs: []string{"0"},
Capabilities: [][]string{{"gpu"}},
Options: nil,
}
}
}
}
下面是 container.DeviceRequest
结构体的定义
// DeviceRequest represents a request for devices from a device driver.
// Used by GPU device drivers.
type DeviceRequest struct {
Driver string // 设备驱动名称 这里就填写 "nvidia" 即可
Count int // 请求设备的数量 (-1 = All)
DeviceIDs []string // 可被设备驱动识别的设备ID列表,可以是索引也可以是UUID
Capabilities [][]string // An OR list of AND lists of device capabilities (e.g. "gpu")
Options map[string]string // Options to pass onto the device driver
}
注意:如果指定了 Count
字段,就无法通过 DeviceIDs
指定 GPU,它们是互斥的。
接下来我们尝试使用 Docker Go SDK 启动一个 pytorch 容器。
首先我们编写一个 test.py
文件,让它在容器内运行,检查 CUDA 是否可用。
# test.py
import torch
print("cuda.is_available:", torch.cuda.is_available())
下面是实验代码,启动一个名为 torch_test_1
的容器,并运行 python3 /workspace/test.py
命令,然后从 stdout
和 stderr
获取输出。
package main
import (
"context"
"fmt"
"github.com/docker/docker/api/types"
"github.com/docker/docker/api/types/container"
"github.com/docker/docker/client"
"github.com/docker/docker/pkg/stdcopy"
"os"
)
var (
defaultHost = "unix:///var/run/docker.sock"
)
func main() {
ctx := context.Background()
cli, err := client.NewClientWithOpts(client.WithHost(defaultHost), client.WithAPIVersionNegotiation())
if err != nil {
panic(err)
}
resp, err := cli.ContainerCreate(ctx,
&container.Config{
Image: "pytorch/pytorch",
Cmd: []string{},
OpenStdin: true,
Volumes: map[string]struct{}{},
Tty: true,
}, &container.HostConfig{
Binds: []string{`/home/joseph/workspace:/workspace`},
Resources: container.Resources{DeviceRequests: []container.DeviceRequest{{
Driver: "nvidia",
Count: 0,
DeviceIDs: []string{"0"},
Capabilities: [][]string{{"gpu"}},
Options: nil,
}}},
}, nil, nil, "torch_test_1")
if err != nil {
panic(err)
}
if err := cli.ContainerStart(ctx, resp.ID, types.ContainerStartOptions{}); err != nil {
panic(err)
}
fmt.Println(resp.ID)
execConf := types.ExecConfig{
User: "",
Privileged: false,
Tty: false,
AttachStdin: false,
AttachStderr: true,
AttachStdout: true,
Detach: true,
DetachKeys: "ctrl-p,q",
Env: nil,
WorkingDir: "/",
Cmd: []string{"python3", "/workspace/test.py"},
}
execCreate, err := cli.ContainerExecCreate(ctx, resp.ID, execConf)
if err != nil {
panic(err)
}
response, err := cli.ContainerExecAttach(ctx, execCreate.ID, types.ExecStartCheck{})
defer response.Close()
if err != nil {
fmt.Println(err)
}
// read the output
_, _ = stdcopy.StdCopy(os.Stdout, os.Stderr, response.Reader)
}
可以看到,程序输出了创建的容器的 Contrainer ID 和 执行命令的输出。
$ go build main.go
$ sudo ./main
264535c7086391eab1d74ea48094f149ecda6d25709ac0c6c55c7693c349967b
cuda.is_available: True
接下来使用 docker ps
查看容器状态。
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
264535c70863 pytorch/pytorch "bash" 2 minutes ago Up 2 minutes torch_test_1
没问题,Container ID 对得上。
【Docker】使用Docker Client和Docker Go SDK为容器分配GPU资源的更多相关文章
- Docker入门与实践之 docker安装与了解
一.Docker 概述 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源.Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后 ...
- Docker 架构详解 - 每天5分钟玩转容器技术(7)
Docker 的核心组件包括: Docker 客户端 - Client Docker 服务器 - Docker daemon Docker 镜像 - Image Registry Docker 容器 ...
- 容器与Docker简介(三)Docker相关术语——微软微服务电子书翻译系列
本节列出了在更加深入Docker之前应该熟悉的术语和定义. 有关详细的定义,请参阅Docker提供的术语表. 容器镜像(Container image):具有创建容器所需要的所有依赖和信息的包. 镜像 ...
- Docker(四):Docker基本网络配置
1.Libnetwork Libnetwork提出了新的容器网络模型简称为CNM,定义了标准的API用于为容器配置网络. CNM三个重要概念: 沙盒:一个隔离的网络运行环境,保存了容器网络栈的配置,包 ...
- Docker(一):Docker安装
简介:Docker是一个开源的引擎,可以轻松的为任何应用创建一个轻量级的.可移植的.自给自足的容器.开发者在笔记本上编译测试通过的容器可以批量地在生产环境中部署,包括VMs(虚拟机).bare met ...
- 每天学一点Docker(5)——了解Docker架构
Docker的核心组件: 1.Docker客户端 - Client 2.Docker服务器 - Docker deamon 3.Docker镜像 - Image 4.仓库 - Registry 5.D ...
- 宋宝华:Docker 最初的2小时(Docker从入门到入门)【转】
最初的2小时,你会爱上Docker,对原理和使用流程有个最基本的理解,避免满世界无头苍蝇式找资料.本人反对暴风骤雨式多管齐下狂轰滥炸的学习方式,提倡迭代学习法,就是先知道怎么玩,有个感性认识,再深入学 ...
- Docker概念学习系列之详谈Docker 的核心组件与概念(5)
不多说,直接上干货! 见[博主]撰写的https://mp.weixin.qq.com/s/0omuSAjF5afJBZBxhbKTqQ 想要了解Docker,就必须了解Docker的五大核心概念 ...
- Docker:使用Jenkins构建Docker镜像
Docker 彭东稳 1年前 (2016-12-27) 10709次浏览 已收录 0个评论 一.介绍Jenkins Jenkins是一个开源项目,提供了一种易于使用的持续集成系统,使开发者从 ...
随机推荐
- 无线:PIN码
PIN码(PIN1),全称Personal Identification Number.就是SIM卡的个人识别密码.手机的PIN码是保护SIM卡的一种安全措施,防止别人盗用SIM卡,如果启用了开机PI ...
- 806. Number of Lines To Write String - LeetCode
Question 806. Number of Lines To Write String Solution 思路:注意一点,如果a长度为4,当前行已经用了98个单元,要另起一行. Java实现: p ...
- Spring boot中最大连接数、最大线程数与最大等待数在生产中的异常场景
在上周三下午时,客户.业务和测试人员同时反溃生产环境登录进入不了系统,我亲自测试时,第一次登录进去了,待退出后再登录时,复现了客户的问题,场景像是请求连接被拒绝了,分析后判断是spring boot的 ...
- CabloyJS一站式助力微信、企业微信、钉钉开发 - 微信篇
前言 现在软件开发不仅要面对前端碎片化,还要面对后端碎片化.针对前端碎片化,CabloyJS提供了pc=mobile+pad的跨端自适应方案,参见:自适应布局:pc = mobile + pad 在这 ...
- JavaScript之创建八个对象过520
马上又到了一年一度的520了,程序猿们赶紧创建对象过520吧!!! JavaScript创建对象的几种方式: 一:字面量方式: var obj = {name: '程序猿'}; 二:通过new操作符: ...
- 第6章 字符串(上)——C风格字符串
6.1 C-strings(C 风格字符串) C风格字符串: 字符数组是元素为字符型的数组,字符串是以空字符'\0' 作为数组最后一个元素的字符数组. 如果指定了数组的大小,而字符串的长度又小于数组大 ...
- c++ 超长整数减法 高精度减法
c++ 超长整数减法 高精度减法 实现思路 和加法类似,设置临时变量记录借位 当对应位数相减得到的结果大于等于0时,该位数字为本身值,否则需要加上借位的10.则\(t=(t+10)%10\) 打卡代码 ...
- 一个ES设置操作引发的“血案”
背景说明 ES版本 7.1.4 在ES生产环境中增加字段,一直提示Setting index.mapper.dynamic was removed after version 6.0.0错误.但是我只 ...
- Redis配置文件所在位置
更新记录 2022年6月13日 发布. Windows系统 Redis 配置文件位于 Redis 安装目录下文件名为 redis.conf 注意:Windows系统下名为 redis.windows. ...
- 解决maven依赖冲突,这篇就够了!
一.前言 什么是依赖冲突 依赖冲突是指项目依赖的某一个jar包,有多个不同的版本,因而造成了包版本冲突. 依赖冲突的原因 我们在maven项目的pom中 一般会引用许许多多的dependency.例如 ...