本文首发于 NebulaGraph 公众号

前言图数据可视化是现代 Web 可视化技术中比较常见的一种展示方式,NebulaGraph Explorer 作为基于 NebulaGraph 的可视化产品,在可视化图数据领域,尤其是在图形渲染性能等领域积累了较丰富的经验。本文将系统性分享 NebulaGraph Explorer 在 3D 图数据展示上的一些应用。以下演示皆可在 https://explorer.nebula-graph.com.cn/explorer 在线试用。二维力导图目前业界常用的图数据展示都采用 2D 力导图的逻辑,如下图所示:



这种二维化的可视化模式,在图形语义上对物理世界数据进行了降维,通过点、边形状来描述实体和关系,符合人脑的习惯性直觉,简化了图数据的理解成本。D3-force,G6 等所采用的就是这样一种布局模式,也是大部分图类场景的基础算法。其布局的力导算法则是大部分基于经典的 Fruchterman 布局算法,模拟弹簧的胡克定律和物体的万有引力,制造相互牵引和排斥的力算法,再通过模拟冷却收敛,最终得到减少交叉、步长等距、点分离独立 的二维图布局。这也是可视化的基本诉求,即能够无遮挡地清晰查看各类繁杂的数据。然而,2D 场景并不一定适用所有场景,主要有以下原因:空间信息展示部分数据具有原生的空间坐标信息,且这部分信息也不可降维,如分子结构、经纬度的球坐标展示、具有层级高度的数据等。这类数据通过 3D 展示会更符合人的习惯和直觉。大数据量布局展示在较大的数据集情况下,由于 2D 没有深度,导致所有的数据需要被平铺在画布上,可以想象一个西瓜的所有西瓜籽平铺的情况,占地面积要远远大于西瓜本身。因此这种情况需要将数据本身信息可视化还原,就需要 3D 可视化技术来实现了。



图数据 3D 可视化图数据的 3D 可视化在逻辑上和 2D 比较像,我们一般依然是采用 2D 的 Fruchterman 力导图逻辑,也依然需要尽量避免交叉遮挡,但维度升了一维,逻辑复杂的也上升不少。因此我们重新自研了 3D 力导向算法来获得更好的效果和性能。可以看到下图同样的复杂网络关系中,3D 显示则会有较为明确的关系展示。提供不同角度的图结构



对于高密度的点边,可以像 3D 游戏一样,将视角转移,切换,观察到不同角度的图数据结构



相同的数据也可以有完全不同的可视化效果。提供鸟瞰视角



在 3D 鸟瞰情况下,可以将点再空间方向散射开,同样数据量下,画布能清晰的标识出节点团簇,也可以轻松的识别出超级节点。通过屏幕内的整体颜色分布,能大致看出来整个可视化图中的节点 Tag 占比。身临其境的体验感



用户可以再整个空间内搜索节点,直接定位到对应节点上,查看相关连的其余节点数据。高性能可视化目前我们的 3D 可视化可以支持 10w 点,10w 边同时渲染。渲染数量是由渲染性能,布局计算性能,内存占用,网络速率,NebulaGraph 性能等各方面因素综合决定的,上限主要由硬件和外部条件限制(网速,客户度机器配置,NebulaGraph机器性能)决定,下限则是由图形渲染及布局算法决定。我们为了提高下限,自研了图形渲染和布局算法部分,得到了较好的效果。海量数据渲染WebGL 是 web 端直接利用 GPU 进行渲染的方式。我们为了提高每一帧的图形渲染能力,在 3D 模式下采用 WebGL 来进行渲染。并且支持高低性能模式:



分别通过原生 shader 和 Mesh 绘制,用户可以根据自己电脑终端的硬件情况选择对应的渲染模式。其中高性能模式下,我们通过自研优化的 shader,利用 GPU 并行计算的能力,将一些渲染效果放到着色器中计算,极大的提高了渲染速率,让渲染性能不再成为瓶颈。这也基本上达到了目前浏览器的极限。快速算法布局在图布局算法方面,我们用八叉树优化了力导过程的算力消耗,并且针对使用 LinLog 模型对超级点进行了受力优化,由于算法性能消耗比较大,我们使用 Golang 对八叉树算法和力导算法进行了重写,最终可以支持在 20w 图元的情况下,预热完成后稳定在 1s 以下完成一次运算。



另外为了图布局计算不影响前台页面渲染,我们利用多个 worker 进程,将不同的 CPU 任务分布下去,这样木桶的各个短板不会影响渲染和交互的长板,用户在布局的时候依然可以灵活的操作。利用上述的一些手段,我们将 3D 可视化的性能几乎提升到浏览器极限,对于一些不大的图空间数据,完全可以一次性载入分析。后续方向由于 3D 模式的开发复杂度较 2D 提升较多,因此目前仅用于一种特殊的图数据展示方式。在未来,我们会综合实际的业务场景,进行更多的体验优化。时序及 GIS 领域的图布局映射图数据坐标到渲染中增加边的相关交互行为


原文链接:https://www.nebula-graph.com.cn/posts/dag-controller

交流图数据库技术?加入 NebulaGraph 交流群请先填写下你的 NebulaGraph 名片,NebulaGraph 小助手会拉你进群~~

图数据 3D 可视化在 Explorer 中的应用的更多相关文章

  1. 数据可视化:Echart中k图实现动态阈值报警及实时更新数据

    1 目标 使用Echart的k图展现上下阈值,并且当真实值超过上阈值或低于下阈值时候,标红报警. 2 实现效果 如下:

  2. 基于 HTML5 的 WebGL 和 VR 技术的 3D 机房数据中心可视化

    前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...

  3. B/S 端基于 HTML5 + WebGL 的 VR 3D 机房数据中心可视化

    前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...

  4. 基于 HTML5 WebGL 和 VR 技术的 3D 机房数据中心可视化

    前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...

  5. 基于 HTML5 WebGL + VR 的 3D 机房数据中心可视化

    前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...

  6. 浅谈工业4.0背景下的空中数据端口,无人机3D 可视化系统的应用

    前言 近年来,无人机的发展越发迅速,既可民用于航拍,又可军用于侦察,涉及行业广泛,把无人机想象成一个“会飞的传感器”,无人机就成了工业4.0的一个空中数据端口,大至地球物理.气象.农业数据.小至个人位 ...

  7. 数据可视化之powerBI基础(十一)Power BI中的数据如何导出到Excel中?

    https://zhuanlan.zhihu.com/p/64415543 把Excel中数据加载到PowerBI中我们都已经熟悉了,但是怎么把在PowerBI中处理好的数据导出到Excel中呢?毕竟 ...

  8. echarts中饼状图数据太多进行翻页

    echarts饼状图数据太多 echarts 饼状图内容太多怎么处理 有些时候,我们饼状图中echarts的数据可能会很多. 这个时候展示肯定会密密麻麻的.导致显示很凌乱 我们需要'翻页'类似表格展示 ...

  9. 基于 HTML5 WebGL 的地铁站 3D 可视化系统

    前言 工业互联网,物联网,可视化等名词在我们现在信息化的大背景下已经是耳熟能详,日常生活的交通,出行,吃穿等可能都可以用信息化的方式来为我们表达,在传统的可视化监控领域,一般都是基于 Web SCAD ...

随机推荐

  1. 根节点选择器和 html 选择器

    CSS 中除了用标签选择器选中<html>标签以外还有一个等价的是:root选择器.CSS 变量是有作用域的,全局变量都可以声明在<html>里. <div class= ...

  2. [CF1539F] Strange Array (线段树)

    题面 有一个长度为 n \tt n n 的序列 a \tt a a ,对于每一个位置 i ∈ [ 1 , n ] \tt i\in[1,n] i∈[1,n]: 选择一个区间 [ l , r ] \tt ...

  3. k8s 网络持久化存储之StorageClass(如何一步步实现动态持久化存储)

    StorageClass的作用: 创建pv时,先要创建各种固定大小的PV,而这些PV都是手动创建的,当业务量上来时,需要创建很多的PV,过程非常麻烦. 而且开发人员在申请PVC资源时,还不一定有匹配条 ...

  4. GNSS模块使用笔记

    目录 目录 GNSS芯片 NMEA0183 协议 指令 GNSS TO MCU MCU TO GNSS GNSS芯片 ATGM336H-5N31(GPS+BDS双模) 原理图 NMEA0183 协议 ...

  5. day32-线程基础02

    线程基础02 3.继承Thread和实现Runnable的区别 从java的设计来看,通过继承Thread或者实现Runnable接口本身来创建线程本质上没有区别,从jdk帮助文档我们可以看到Thre ...

  6. KingbaseES 的闪回查询

    KingbaseES V008R006C006B0013版本新增支持闪回查询,闪回版本查询.闪回表到指定时间点.旧版本已支持闪回回收站技术. 闪回技术(闪回查询和闪回表到指定时间点)可以通过时间戳和C ...

  7. Linux命令之find、grep、echo、tar、whoami、uname

    1. whoami--查看当前登录的用户名 book@100ask:~/linux$ whoami book 2. echo--打印命令,配合'>'或者'>>'使用 echo 打印信 ...

  8. Python数据分析教程(一):Numpy

    原文链接:https://blog.onefly.top/posts/13140.html 数据的纬度 一维数据:列表和集合类型 二维数据:列表类型 多维数据:列表类型 高维数据:字典类型或数据表示格 ...

  9. Kubernetes实践技巧:升级为集群

    高可用 前面我们课程中的集群是单 master 的集群,对于生产环境风险太大了,非常有必要做一个高可用的集群,这里的高可用主要是针对控制面板来说的,比如 kube-apiserver.etcd.kub ...

  10. 修复 Elasticsearch 集群的常见错误和问题

    文章转载自:https://mp.weixin.qq.com/s/8nWV5b8bJyTLqSv62JdcAw 第一篇:Elasticsearch 磁盘使用率超过警戒水位线 从磁盘常见错误说下去 当客 ...