2021.12.08 平衡树——FHQ Treap

http://www.yhzq-blog.cc/fhqtreapzongjie/

https://www.cnblogs.com/zwfymqz/p/7151959.html

1. FHQ Treap

FHQ Treap与Treap一样,都有关键码和优先级。关键码满足二叉搜索树的性质——左子树的关键码小于根节点,右子树的关键码大于根节点。优先级满足堆的性质——所有子树的优先级均大于或小于根节点的优先级的值。

因此,本篇博客默认优先级越大越优。

2. 建新点add

val[cnt] :cnt节点的关键码的值

key[cnt] :cnt节点的优先级的值

cnt :记录点的个数

代码如下:

inline int add(int x){
sizei[++cnt]=1;
val[cnt]=x;
key[cnt]=rand();
return cnt;
}

3. 分裂split

作为无旋Treap,FHQ Treap的一切操作都是建立在分裂与合并上的。

分裂有两种情况,第一种按照关键码大小分裂,第二种按照子树大小分裂。

3.1 按照关键码大小分裂

rt :目前所在的节点

son[x][0/1] :0 \(\rightarrow\) 左子树,1 \(\rightarrow\) 右子树

x :分裂后分成两棵树的左边的树

y :分裂后分成两棵的树右边的树

vali :分裂的标准,小于等于就分到左边,大于等于就分到右边

如果 \(val[rt]<=vali\) ,左子树分到x,继续分裂右子树;

如果 \(val[rt]>vali\) ,右子树分到y,继续分裂左子树。

分裂前记得pushdown一下,分裂后记得update。

代码如下:

inline void split(int rt,int vali,int &x,int &y){
if(!rt)return (void)(x=y=0);
pushdown(rt);
if(val[son[rt][0]]>vali)
y=rt,split(son[rt][0],vali,x,son[rt][0]);
else x=rt,split(son[rt][1],vali,son[rt][1],y);
update(rt);
}

update的代码:

inline void update(int x){
sizei[x]=sizei[son[x][0]]+sizei[son[x][1]]+1;
}

pushwon的代码:

inline void pushdown(int x){
if(!lazy[x]||!x)return ;
swap(son[x][0],son[x][1]);
if(son[x][0])lazy[son[x][0]]^=1;
if(son[x][1])lazy[son[x][1]]^=1;
lazy[x]=0;
}

3.2 按照子树大小分裂

k :以k为分界线,前k-1个节点分到一棵树中,k以及k之后的节点分到另一颗树中。

类似于Treap根据排名找分数。

代码如下:

inline void split(int rt,int k,int &x,int &y){
if(!rt)return (void)(x=y=0);
pushdown(rt);
if(sizei[son[rt][0]]>=k)
y=rt,split(son[rt][0],k,x,son[rt][0]);
else x=rt,split(son[rt][1],k-sizei[son[rt][0]]-1,son[rt][1],y);
update(rt);
}

3.3 分裂后x子树与y子树的解释

int &x; :是按地址出送,只要修改 x就是把x所在地址的x直接修改了

所以在 if(sizei[son[rt][0]]>=k)y=rt,split(son[rt][0],k,x,son[rt][0]); 中,修改了y的值,把y的值变为肯定不会变的rt。我们要继续分裂的是子树 son[x][0] ,所以 son[x][0] 中子树大小小于k的全部分到x中,剩下的继续留在 son[x][0] 中, sizei[son[rt][0]]<k 时同理。直到把整棵树都分裂完为止,返回上一级。到x时,这个时候x的左右儿子被更新过了,按照子树大小的标准分裂。对于根节点来说,它的子树被完整地分成两份存在x和y中(也可能是其他的变量/笑哭).

4. 合并merge

注:合并返回的是结点的编号

x :被合并的左子树

y :被合并的右子树

如果两棵子树中任意一棵子树为空子树,直接返回 x+y ,反正是返回编号;

如果x优先级高于y优先级,把 son[x][1]y 合并;

否则把 xson[y][0] 合并。

代码如下:

inline int merge(int x,int y){
if(!x||!y)return x+y;
pushdown(x);pushdown(y);
if(key[x]<key[y]){
son[y][0]=merge(x,son[y][0]);
update(y);
return y;
}else{
son[x][1]=merge(son[x][1],y);
update(x);
return x;
}
}

记得pushdown与update~

5. 区间翻转rotate

lazy[x] :类似于线段树的懒标记,功能也一样

L :区间左端点

R :区间右端点

注:以k为标准就是把 \(1,2,\cdots,k-1\) 分到一棵子树,把 \(k,k+1,\cdots,n\) 分到另一棵子树。

先把以 root 为根节点的子树以R+1为标准分成两棵——左子树为 u ,右子树为 v

再把以 u 为根节点的子树以L为标准分成两棵——左子树为 w ,右子树为 x

x 包含区间L到R,更新 lazy[x] ,合并。

合并一定要按顺序,先合并 wx ,再把新结果一起合并 v

代码如下:

inline void rotate(int L,int R){
int u,v,w,x;
split(root,R+1,u,v);
split(u,L,w,x);
lazy[x]^=1;
root=merge(merge(w,x),v);
}

6. 建树build

和线段树差不多,只不过是一边建新点一边建子树,不过 FHQ Treap左子树不包含本节点。

代码如下:

inline int build(int l,int r){
if(l>r)return 0;
int mid=(l+r)>>1;
int x=add(mid-1);
son[x][0]=build(l,mid-1);
son[x][1]=build(mid+1,r);
update(x);
return x;
}

7. 模板题 P3391 【模板】文艺平衡树

https://www.luogu.com.cn/problem/P3391

代码如下:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<stack>
#define IOS ios_base::sync_with_stdio(false);cin.tie(0);cout.tie(0);
using namespace std; const int N=1e5+10;
int n,m,a[N];
int root,cnt,son[N][2],val[N],sizei[N],lazy[N],key[N]; inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')w=-1;
ch=getchar();
}
while(ch<='9'&&ch>='0'){
s=s*10+ch-'0';
ch=getchar();
}
return s*w;
}
inline void update(int x){
sizei[x]=sizei[son[x][0]]+sizei[son[x][1]]+1;
}
inline void pushdown(int x){
if(!lazy[x]||!x)return ;
swap(son[x][0],son[x][1]);
if(son[x][0])lazy[son[x][0]]^=1;
if(son[x][1])lazy[son[x][1]]^=1;
lazy[x]=0;
}
inline int add(int x){
sizei[++cnt]=1;
val[cnt]=x;
key[cnt]=rand();
return cnt;
}
inline void split(int rt,int k,int &x,int &y){
if(!rt)return (void)(x=y=0);
pushdown(rt);
if(sizei[son[rt][0]]>=k)
y=rt,split(son[rt][0],k,x,son[rt][0]);
else x=rt,split(son[rt][1],k-sizei[son[rt][0]]-1,son[rt][1],y);
update(rt);
}
inline int merge(int x,int y){
if(!x||!y)return x+y;
pushdown(x);pushdown(y);
if(key[x]>=key[y]){
son[y][0]=merge(x,son[y][0]);
update(y);
return y;
}else{
son[x][1]=merge(son[x][1],y);
update(x);
return x;
}
}
inline void rotate(int L,int R){
int u,v,w,x;
split(root,R+1,u,v);
split(u,L,w,x);
lazy[x]^=1;
root=merge(merge(w,x),v);
}
inline int build(int l,int r){
if(l>r)return 0;
int mid=(l+r)>>1;
int x=add(mid-1);
son[x][0]=build(l,mid-1);
son[x][1]=build(mid+1,r);
update(x);
return x;
}
inline void dfs(int x){
if(!x)return ;
pushdown(x);
if(son[x][0])dfs(son[x][0]);
if(val[x]>=1&&val[x]<=n)cout<<val[x]<<" ";
if(son[x][1])dfs(son[x][1]);
} int main(){
n=read();m=read();
root=build(1,n+2);
//dfs(root);cout<<endl;
for(int i=1;i<=m;i++){
int u,v;
u=read();v=read();
rotate(u,v);
}
dfs(root);
return 0;
}

2021.12.08 平衡树——FHQ Treap的更多相关文章

  1. 2021.12.08 [SHOI2009]会场预约(平衡树游码表)

    2021.12.08 [SHOI2009]会场预约(平衡树游码表) https://www.luogu.com.cn/problem/P2161 题意: 你需要维护一个 在数轴上的线段 的集合 \(S ...

  2. 2021.12.06 平衡树——Treap

    2021.12.06 平衡树--Treap https://www.luogu.com.cn/blog/HOJQVFNA/qian-xi-treap-ping-heng-shu 1.二叉搜索树 1.1 ...

  3. 2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP)

    2021.12.08 P1848 [USACO12OPEN]Bookshelf G(线段树优化DP) https://www.luogu.com.cn/problem/P1848 题意: 当农夫约翰闲 ...

  4. Luogu P3835 【模板】可持久化平衡树(fhq Treap)

    P3835 [模板]可持久化平衡树 题意 题目背景 本题为题目普通平衡树的可持久化加强版. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本 ...

  5. 洛谷.3369.[模板]普通平衡树(fhq Treap)

    题目链接 第一次(2017.12.24): #include<cstdio> #include<cctype> #include<algorithm> //#def ...

  6. P3391 【模板】文艺平衡树FHQ treap

    P3391 [模板]文艺平衡树(Splay) 题目背景 这是一道经典的Splay模板题——文艺平衡树. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转 ...

  7. 洛谷.3835.[模板]可持久化平衡树(fhq treap)

    题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...

  8. FHQ Treap及其可持久化与朝鲜树式重构

    FHQ Treap,又称无旋treap,一种不基于旋转机制的平衡树,可支持所有有旋treap.splay等能支持的操作(只有在LCT中会比splay复杂度多一个log).最重要的是,它是OI中唯一一种 ...

  9. 【fhq Treap】bzoj1500(听说此题多码上几遍就能不惧任何平衡树题)

    1500: [NOI2005]维修数列 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 15112  Solved: 4996[Submit][Statu ...

随机推荐

  1. [SPDK/NVMe存储技术分析]009 - Introduction to RDMA Send | RDMA Send操作概论

    来源: https://zcopy.wordpress.com/ 说明: 本文不是对原文的逐字逐句翻译,而是摘取核心部分以介绍RDMA Send操作(后面凡是提到RDMA send, 都对应于IBA里 ...

  2. javaweb项目对https的配置01

    1.准备证书生成 a.进入到jdk下的bin目录(如果配置了Java的环境,可以直接在cmd命令窗口中直接输入如下命令) keytool -v -genkey -alias tomcat -keyal ...

  3. Java并发编程虚假唤醒问题(生产者和消费者关系)

    何为虚假唤醒: 当一个条件满足时,很多线程都被唤醒了,但是只有其中部分是有用的唤醒,其它的唤醒都是无用功:比如买货:如果商品本来没有货物,突然进了一件商品,这是所有的线程都被唤醒了,但是只能一个人买, ...

  4. 一种优雅的Golang的库插件注册加载机制

    一种优雅的Golang的库插件注册加载机制 你好,我是轩脉刃. 最近看到一个内部项目的插件加载机制,非常赞.当然这里说的插件并不是指的golang原生的可以在buildmode中加载指定so文件的那种 ...

  5. Git初始化常用方法

    准备工作 安装git sudo apt install git 创建一个ssh密钥 如果已经有ssh密钥了,则这一步不要执行 ssh-keygen -t rsa -C '账号' 复制公钥内容 gedi ...

  6. dfs:10元素取5个元素的组合数

    #include "iostream.h" #include "string.h" #include "stdlib.h" int sele ...

  7. 什么是sql注入?如何有效防止sql注入?

    一.什么是sql注入 利用程序员的代码bug,将输入的参数绕过校验并在系统中当做代码运行,从而攻击系统. 二.如何避免sql注入 1.对sql语句进行预编译 PreparedStatement类可以对 ...

  8. oracle.i18n.text.convert.CharacterConverterOGS.getInstance(I)Loracle/i18n/text/converter/CharacterConver;

    看看项目是不是同时包含ojdbc系列jar包和nls_charset12.jar包.如果同时包含,则删除nls_charset12.jar.因为低版本的nls_charset12和ojdbc包冲突.

  9. 学习GlusterFS(二)

    环境准备 3台机器,每个机器双网卡,每个机器还需要额外添加1个10GB的磁盘用于测试 机器系统版本是centos6.6 1 2 3 4 5 [root@gluster-1-1 ~]# uname -r ...

  10. 03-三高-并行并发&服务集群

          三高项目 服务并行&并发 并行和并发 服务的搭建中,并行 并发.----并发. 集群 同质的(同样的配置,运行同样的程序,对外提供同样的服务). 修改同样的存储,可以认. (小建议 ...