RSA中用到的推导,笔记持续更新
1.同余式组求p和q
已知条件:
推导过程:
根据上述已知条件,以及同余式性质,我们可以得到如下:
c1e2 = (2p + 3q)e1*e2 mod N
c2e1 = (5p + 7q)e1*e2 mod N
从而得到:
5e1 * e2 * c1e2 = (10p + 15q)e1*e2 mod N
2e1 * e2 * c2e1 = (10p + 14q)e1*e2 mod N
令 a = 5e1 * e2 * c1e2 , b = 2e1 * e2 * c2e1
a = (10p + 15q)e1*e2 mod N
b = (10p + 14q)e1*e2 mod N
由如下同余性质:
可以得到:
a = (10p + 15q)e1*e2 mod q
b = (10p + 14q)e1*e2 mod q
易知:a mod q = b mod q
则可以得到:(a - b) mod q = 0
到此我们就可以知道 q 是 a - b 的一个因子,知道 a - b 就可以算出 q ,从而算出 p
题目及解题脚本:
from fractions import gcd
N = 14905562257842714057932724129575002825405393502650869767115942606408600343380327866258982402447992564988466588305174271674657844352454543958847568190372446723549627752274442789184236490768272313187410077124234699854724907039770193680822495470532218905083459730998003622926152590597710213127952141056029516116785229504645179830037937222022291571738973603920664929150436463632305664687903244972880062028301085749434688159905768052041207513149370212313943117665914802379158613359049957688563885391972151218676545972118494969247440489763431359679770422939441710783575668679693678435669541781490217731619224470152467768073
e1 = 12886657667389660800780796462970504910193928992888518978200029826975978624718627799215564700096007849924866627154987365059524315097631111242449314835868137
e2 = 12110586673991788415780355139635579057920926864887110308343229256046868242179445444897790171351302575188607117081580121488253540215781625598048021161675697
c1 = 14010729418703228234352465883041270611113735889838753433295478495763409056136734155612156934673988344882629541204985909650433819205298939877837314145082403528055884752079219150739849992921393509593620449489882380176216648401057401569934043087087362272303101549800941212057354903559653373299153430753882035233354304783275982332995766778499425529570008008029401325668301144188970480975565215953953985078281395545902102245755862663621187438677596628109967066418993851632543137353041712721919291521767262678140115188735994447949166616101182806820741928292882642234238450207472914232596747755261325098225968268926580993051
c2 = 14386997138637978860748278986945098648507142864584111124202580365103793165811666987664851210230009375267398957979494066880296418013345006977654742303441030008490816239306394492168516278328851513359596253775965916326353050138738183351643338294802012193721879700283088378587949921991198231956871429805847767716137817313612304833733918657887480468724409753522369325138502059408241232155633806496752350562284794715321835226991147547651155287812485862794935695241612676255374480132722940682140395725089329445356434489384831036205387293760789976615210310436732813848937666608611803196199865435145094486231635966885932646519 f1 = pow(5, e1*e2, N) * pow(c1, e2, N)
f2 = pow(2, e1*e2, N) * pow(c2, e1, N)
q = abs(gcd(N, f1-f2))
p = N//q
print(N, p, q, N-p*q, sep='\n')
RSA中用到的推导,笔记持续更新的更多相关文章
- BLE资料应用笔记 -- 持续更新
BLE资料应用笔记 -- 持续更新 BLE 应用笔记 小书匠 简而言之,蓝牙无处不在,易于使用,低耗能和低使用成本.'让我们'更深入地探索这些方面吧. 蓝牙无处不在-,您可以在几乎每一台电话.笔记本电 ...
- [读书]10g/11g编程艺术深入体现结构学习笔记(持续更新...)
持续更新...) 第8章 1.在过程性循环中提交更新容易产生ora-01555:snapshot too old错误.P257 (这种情况我觉得应该是在高并发的情况下才会产生) 假设的一个场景是系统一 ...
- react-native-storage 使用笔记 持续更新
React-native-storage是在AsyncStorage之上封装的一个缓存操作插件库,刚开始接触这个也遇到了一些问题,在这里简单记录总结一下,碰到了就记下来,持续更新吧 1.安卓下stor ...
- 数据分析之Pandas和Numpy学习笔记(持续更新)<1>
pandas and numpy notebook 最近工作交接,整理电脑资料时看到了之前的基于Jupyter学习数据分析相关模块学习笔记.想着拿出来分享一下,可是Jupyter导出来h ...
- Codeforces/TopCoder/ProjectEuler/CodeChef 散题笔记 (持续更新)
最近做到了一些有趣的散题,于是开个Blog记录一下吧… (如果有人想做这些题的话还是不要看题解吧…) 2017-03-16 PE 202 Laserbeam 题意:有一个正三角形的镜子屋,光线从$C$ ...
- BLE资料应用笔记 -- 持续更新(转载)
简而言之,蓝牙无处不在,易于使用,低耗能和低使用成本.’让我们’更深入地探索这些方面吧. 蓝牙无处不在—,您可以在几乎每一台电话.笔记本电脑 .台式电脑和平板电脑中找到蓝牙.因此,您可以便利地连接键盘 ...
- Semantic ui 学习笔记 持续更新
这个semantic 更新版本好快~ 首先是代码的标识<code></code> 具体样式就是红框这样的 圈起来代码感觉不错 不过要在semantic.css里在加上如下样式~ ...
- Git学习笔记(持续更新)
1.强制同步为远程的代码 远程仓库回退了commit的情况下(第2条描述之情况),强制同步远程的代码到本地 #更新远程最新的所有代码,但是不merge或者rebase git fetch --all ...
- web前端开发随手笔记 - 持续更新
本文仅为个人常用代码整理,供自己日常查阅 html 浏览器内核 <!--[if IE]><![endif]--> <!--[if IE 6]><![endif ...
随机推荐
- gradle项目对比maven项目的目录架构以及对gradle wrapper的理解
转载请注明出处: 1.使用 idea 搭建 gradle项目 注意 type 选择 gradle 以及 language 选择 grooy 搭建后的项目架构 ...
- [Mysql] 页结构
什么是页? 页是InnoDB中管理数据的最小单元 页与页之间是通过一个双向链表连接起来. 页的组成 FileHeader 上一页下一页的指针 FIL_PAGE_PREV FIL_PAGE_NEXT P ...
- Vue3 SFC 和 TSX 方式调用子组件中的函数
在开发中会遇到这样的需求:获取子组件的引用,并调用子组件中定义的方法.如封装了一个表单组件,在父组件中需要调用这个表单组件的引用,并调用这个表单组件的校验表单函数或重置表单函数.要实现这个功能,首先要 ...
- Python学习笔记----列表、元组和字典的基础操作
文章目录 一.列表的基本操作 1.1 修改列表中的某个数据 1.2 获取某个元素的返回值(返回的是索引) 1.3 在列表中插入新的元素 1.4 删除列表中的元素 1.5 +和* 二.内置的函数和方法 ...
- 15 Uncaught TypeError: Cannot set properties of null (setting ‘onclick‘)
1.报错的代码 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <t ...
- 基于 Redis 实现分布式锁
1.主流分布式锁实现方案 基于数据库实现分布式锁 基于缓存(redis 等) 基于 Zookeeper 2.根据实现方式分类 类 CAS 自旋式分布式锁:询问的方式,类似 java 并发编程中的线程获 ...
- C# 6.0 添加和增强的功能【基础篇】
C# 6.0 是在 visual studio 2015 中引入的.此版本更多关注了语法的改进,让代码更简洁且更具可读性,使编程更有效率,而不是和前几个版本一样增加主导性的功能. 一.静态导入 我们都 ...
- Vue ref 和 v-for 结合(ref 源码解析)
前言 Vue 中组件的使用很方便,而且直接取组件实例的属性方法等也很方便,其中通过 ref 是最普遍的. 平时使用中主要是对一个组件进行单独设置 ref ,但是有些场景下可能是通过给定数据渲染的,这时 ...
- Mybatis-Plus多表联查
表格结构: CREATE TABLE `ssmpdemo`.`person_test` ( `id` varchar(32) CHARACTER SET utf8 COLLATE utf8_gener ...
- 论文笔记 - Active Learning by Acquiring Contrastive Examples
Motivation 最常用来在 Active Learning 中作为样本检索的两个指标分别是: 基于不确定性(给模型上难度): 基于多样性(扩大模型的推理空间). 指标一可能会导致总是选到不提供有 ...