本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。

大家好,我是小彭。

前天刚举办 2023 年力扣杯个人 SOLO 赛,昨天周赛就出了一场 Easy - Easy - Medium - Medium 的水场,不得不说 LeetCode 是懂礼数的 。

接下来,请你跟着小彭的思路,一步步将问题做难,再将问题做简单。

往期回顾:LeetCode 单周赛 341 · 难度上来了,图论的问题好多啊!

LeetCode 周赛 342 概览

Q1. 计算列车到站时间(Easy)

简单模拟题,不多讲解。

Q2. 倍数求和(Easy)

题解 1:暴力解法 $O(n)$ 时间复杂度

题解 2:分析数据特征后发现数据存在等差数列性质,我们利用容斥原理和等差数列求和公式,可以把优化到 $O(1)$ 时间复杂度

Q3. 滑动子数组的美丽值(Medium)

题解 1:在滑动窗口的基础上,结合快速选择查找滑动窗口中第 x 小的元素,时间复杂度是 $O(n·k)$

题解 2:分析数据特征后发现题目的值域非常小,我们可以用计数排序代替快速选择,时间复杂度为 $O(n·U)$

Q4. 使数组所有元素变成 1 的最少操作次数(Medium)

在问题分析后我们将原问题抽象为 “寻找 GCB 为 1 的最短子数组”,关联相似的 “和为 k 的最短子数组” 问题,我们有从暴力 → 有序集合 → 单调性优化的解法:

题解 1:暴力 $O(n·(n + logU))$ 时间复杂度

题解 2:有序集合 $O(n·lgU·lg(lgU))$ 时间复杂度

题解 3:单调性优化 $O(n·lgU)$ 时间复杂度


Q1. 计算列车到站时间(Easy)

题目地址

https://leetcode.cn/problems/calculate-delayed-arrival-time/

题目描述

给你一个正整数 arrivalTime 表示列车正点到站的时间(单位:小时),另给你一个正整数 delayedTime 表示列车延误的小时数。

返回列车实际到站的时间。

注意,该问题中的时间采用 24 小时制。

示例 1:

输入:arrivalTime = 15, delayedTime = 5
输出:20
解释:列车正点到站时间是 15:00 ,延误 5 小时,所以列车实际到站的时间是 15 + 5 = 20(20:00)。

示例 2:

输入:arrivalTime = 13, delayedTime = 11
输出:0
解释:列车正点到站时间是 13:00 ,延误 11 小时,所以列车实际到站的时间是 13 + 11 = 24(在 24 小时制中表示为 00:00 ,所以返回 0)。

提示:

  • 1 <= arrivaltime < 24
  • 1 <= delayedTime <= 24

题解(模拟)

简单模拟题,按题意实现即可。

class Solution {
fun findDelayedArrivalTime(arrivalTime: Int, delayedTime: Int): Int {
return (arrivalTime + delayedTime) % 24
}
}

复杂度分析:

  • 时间复杂度:$O(1)$
  • 空间复杂度:$O(1)$

Q2. 倍数求和(Easy)

题目地址

https://leetcode.cn/problems/sum-multiples/

题目描述

给你一个正整数 n ,请你计算在 [1,n] 范围内能被 357 整除的所有整数之和。

返回一个整数,用于表示给定范围内所有满足约束条件的数字之和。

示例 1:

输入:n = 7
输出:21
解释:在[1, 7] 范围内能被 3、5、7 整除的所有整数分别是 3、5、6、7 。数字之和为21 。

示例 2:

输入:n = 10
输出:40
解释:在[1, 10] 范围内能被 3、5、7 整除的所有整数分别是 3、5、6、7、9、10 。数字之和为40 。

示例 3:

输入:n = 9
输出:30
解释:在[1, 9] 范围内能被 3、5、7 整除的所有整数分别是 3、5、6、7、9 。数字之和为30 。

提示:

  • 1 <= n <= 103

预备知识 - 容斥原理

定义集合 A 表示能够被 3 整除的数,定义集合 B 表示能够被 5 整除的数,定义集合 C 表示能够被 7 整除的数。如果把这 3 个集合直接加起来,会多出来一些元素重复统计了,因此需要扣除 A ∩ B,A ∩ C 和 B ∩ C ,但是又有一小部分元素多扣了,反而再需要加上 A ∩ B ∩ C。这就是 容斥原理

$$

A ∪ B ∪ C = A + B + C - A ∩ B - A ∩ C - B ∩ C + A ∩ B ∩ C

$$

其中:

  • A ∪ B ∪ C 表示能够被 3 或 5 或 7 整除的数,也就是原问题的解;
  • A ∩ B 表示能够同时被 3 和 5 整除的数;
  • A ∩ C 表示能够同时被 3 和 7 整除的数;
  • B ∩ C 表示能够同时被 5 和 7 整除的数。

预备知识 - 等差数列求和

  • 等差数列求和公式:(首项 + 尾项) * 项数 / 2

题解一(暴力)

先思考暴力解法:

算法:枚举每个数,检查该数字是否为 3 / 5 / 7 的倍数,是则计入结果中。

class Solution {
fun sumOfMultiples(n: Int): Int {
var ret = 0
for (i in 1 .. n) {
if(i % 3 == 0 || i % 5 == 0 || i % 7 == 0) ret += i
}
return ret
}
}

复杂度分析:

  • 时间复杂度:$O(n)$ 其中 n 为 nums 数组的长度,每个元素最多访问 1 次;
  • 空间复杂度:$O(1)$

题解二(容斥原理 + 等差数列求和公式)

暴力解法是否有优化空间呢,先分析重复计算:

  • 要点 1:可以观察到 [1, n] 范围中的目标数是存在关联的,以 3 的倍数为例,3、6、9、12 是以 3 为等差的等差数列,而等差数列的和可以使用公式计算。数字 m 在 [1, n] 范围内中的倍数为 n / m 个,可以使用等差数列求和公式以 O(1) 算出这部分元素之和;
  • 要点 2:结合容斥原理,可以在 O(1) 时间复杂度求出原问题。那么能够同时被 3 和 5 整除的等差数列如何计算呢?其实就是计算 15 的倍数。同理能够同时被 3 和 5 和 7 整除的等差数列就是 105 的倍数。

至此,结合容斥原理模拟即可:

class Solution {
fun sumOfMultiples(n: Int): Int {
return sum(n, 3) + sum(n, 5) + sum(n, 7) - sum(n, 15) - sum(n, 21) - sum(n, 35) + sum(n, 105)
} private fun sum(n:Int, k:Int) :Int {
// 等差数列求和公式:(首项 + 尾项) * 项数 / 2
return (k + (n / k * k)) * (n / k) / 2
}
}

复杂度分析:

  • 时间复杂度:$O(1)$
  • 空间复杂度:$O(1)$

Q3. 滑动子数组的美丽值(Medium)

题目地址

https://leetcode.cn/problems/sliding-subarray-beauty/description/

题目描述

给你一个长度为 n 的整数数组 nums ,请你求出每个长度为 k 的子数组的 美丽值 。

一个子数组的 美丽值 定义为:如果子数组中第 x 小整数 是 负数 ,那么美丽值为第 x 小的数,否则美丽值为 0 。

请你返回一个包含 n - k + 1 个整数的数组,依次** 表示数组中从第一个下标开始,每个长度为 k 的子数组的 美丽值 。

  • 子数组指的是数组中一段连续 非空 的元素序列。

示例 1:

输入:nums = [1,-1,-3,-2,3], k = 3, x = 2
输出:[-1,-2,-2]
解释:总共有 3 个 k = 3 的子数组。
第一个子数组是[1, -1, -3] ,第二小的数是负数 -1 。
第二个子数组是[-1, -3, -2] ,第二小的数是负数 -2 。
第三个子数组是[-3, -2, 3] ,第二小的数是负数 -2 。

示例 2:

输入:nums = [-1,-2,-3,-4,-5], k = 2, x = 2
输出:[-1,-2,-3,-4]
解释:总共有 4 个 k = 2 的子数组。
[-1, -2] 中第二小的数是负数 -1 。[-2, -3] 中第二小的数是负数 -2 。[-3, -4] 中第二小的数是负数 -3 。[-4, -5] 中第二小的数是负数 -4 。

示例 3:

输入:nums = [-3,1,2,-3,0,-3], k = 2, x = 1
输出:[-3,0,-3,-3,-3]
解释:总共有 5 个 k = 2 的子数组。
[-3, 1] 中最小的数是负数 -3 。[1, 2] 中最小的数不是负数,所以美丽值为 0 。[2, -3] 中最小的数是负数 -3 。[-3, 0] 中最小的数是负数 -3 。[0, -3] 中最小的数是负数 -3 。

提示:

  • n == nums.length
  • 1 <= n <= 105
  • 1 <= k <= n
  • 1 <= x <= k
  • 50 <= nums[i] <= 50

预备知识

求出每个长度为 k 的子数组的美丽值,容易想到可以用滑动窗口。

伪代码为:

// 伪代码
for (i in 0 until n) {
// 进入窗口
list.add(i)
// 离开窗口
if (i >= k) list.remove(i - k)
if (i >= k - 1) {
// 计算窗口答案
}
}

题解一(滑动窗口 + 快速选择 · 超出时间限制)

在滑动窗口的基础上,使用快速选择查找窗口中第 x 小的数:

class Solution {

    private val random = Random(0)

    fun getSubarrayBeauty(nums: IntArray, k: Int, x: Int): IntArray {
val n = nums.size
val ret = LinkedList<Int>()
val list = ArrayList<Int>()
for (i in 0 until n) {
// 进入窗口
list.add(i)
// 离开窗口
if (i >= k) list.remove(i - k)
if (i >= k - 1) {
// 计算窗口答案
quickSelect(nums, list, x)
val num = nums[list[x - 1]]
ret.add(if (num < 0) num else 0)
}
}
return ret.toIntArray()
} private fun quickSelect(nums: IntArray, list: ArrayList<Int>, x: Int) {
val target = x - 1
var left = 0
var right = list.size - 1
while (left < right) {
val pivot = partition(nums, list, left, right)
if (pivot == target) {
return
} else if (pivot < target) {
left = pivot + 1
} else {
right = pivot - 1
}
}
} private fun partition(nums: IntArray, list: ArrayList<Int>, left: Int, right: Int): Int {
val random = random.nextInt(right - left + 1) + left
list.swap(random, right)
var p = left
for (i in left until right) {
if (nums[list[i]] < nums[list[right]]) list.swap(i, p++)
}
list.swap(p, right)
return p
} private fun ArrayList<Int>.swap(i: Int, j: Int) {
val temp = this[i]
this[i] = this[j]
this[j] = temp
}
}

复杂度分析:

  • 时间复杂度:$O(n·k)$ 其中 n 是 nums 数组的长度,单次窗口快速选择的时间复杂度是 $O(k)$;
  • 空间复杂度:$O(k)$ 滑动窗口空间。

题解二(滑动窗口 + 计数排序)

注意到题目的值域非常小,能否利用起来:

我们可以用计数排序代替快速选择,用 cnts 计数数组计算窗口内每个元素的出现次数,再根据计数数组计算出第 x 小的数:

class Solution {

    private val random = Random(0)

    fun getSubarrayBeauty(nums: IntArray, k: Int, x: Int): IntArray {
val n = nums.size
val OFFSET = 50
val cnts = IntArray(OFFSET * 2 + 1)
val ret = IntArray(n - k + 1)
outer@ for (i in 0 until n) {
// 进入窗口
cnts[OFFSET + nums[i]]++
// 离开窗口
if (i >= k) cnts[OFFSET + nums[i - k]]--
if (i >= k - 1) {
// 计算窗口美丽值
var count = x
// for (num in -OFFSET .. -1) {
for (num in -OFFSET .. OFFSET) {
count -= cnts[num + 50]
if (count <= 0) {
// 找到第 x 小的数
// ret[i - k + 1] = num
ret[i - k + 1] = if(num < 0) num else 0
continue@outer
}
}
}
}
return ret
}
}

另外,由于题目要求美丽值是负数,所以在计算窗口美丽值时,我们只需要枚举 [-50, -1] 的元素值。

复杂度分析:

  • 时间复杂度:$O(n·U)$ 其中 n 是 nums 数组的长度,U 是值域大小 101。每次滑动窗口求第 x 小的元素时间是 $O(U)$;
  • 空间复杂度:$O(U)$ 计数数组空间。

Q4. 使数组所有元素变成 1 的最少操作次数(Medium)

题目地址

https://leetcode.cn/problems/minimum-number-of-operations-to-make-all-array-elements-equal-to-1/description/

题目描述

给你一个下标从 0 开始的  整数数组 nums 。你可以对数组执行以下操作 任意 次:

  • 选择一个满足 0 <= i < n - 1 的下标 i ,将 nums[i] 或者 nums[i+1] 两者之一替换成它们的最大公约数。

请你返回使数组 nums 中所有元素都等于 1 的 最少 操作次数。如果无法让数组全部变成 1 ,请你返回 -1 。

两个正整数的最大公约数指的是能整除这两个数的最大正整数。

示例 1:

输入:nums = [2,6,3,4]
输出:4
解释:我们可以执行以下操作:
- 选择下标 i = 2 ,将 nums[2] 替换为 gcd(3,4) = 1 ,得到 nums = [2,6,1,4] 。
- 选择下标 i = 1 ,将 nums[1] 替换为 gcd(6,1) = 1 ,得到 nums = [2,1,1,4] 。
- 选择下标 i = 0 ,将 nums[0] 替换为 gcd(2,1) = 1 ,得到 nums = [1,1,1,4] 。
- 选择下标 i = 2 ,将 nums[3] 替换为 gcd(1,4) = 1 ,得到 nums = [1,1,1,1] 。

示例 2:

输入:nums = [2,10,6,14]
输出:-1
解释:无法将所有元素都变成 1 。

提示:

  • 2 <= nums.length <= 50
  • 1 <= nums[i] <= 106

问题分析

分析目标结果:

使得数组中所有元素都变成 1 的最少操作次数。

分析题目示例:

  • 由于在每次操作中最多只能将一个数字修改为最大公约数,那么将 1 个元素操作为 “1” 的最小操作次数(如果可行)不会低于 1 次,将 n 个大于 1 的元素操作为 “1” 的最小次数不会低于 n 次,例如样例 [2,6,1,4]。
  • 如果数组中至少存在 1 个 “1” 时,我们只需要将每个 “1” 与相邻的 “非 1” 元素组合操作,就能将所有元素,例如样例 [2,6,1,4]。这说明,问题的最小操作次数正好就是数组中不是 “1” 的个数。
  • 如果数组中不存在 “1”,需要先操作出原始的 “1”:
    • 如果数组中所有元素的最大公约数大于 1,那么无论如何也无法操作出数字 1,例如样例 [2, 10, 6, 14];
    • 否则,我们总可以操作 x 次获得原始 “1”,那么问题就等于 count + n - 1;

至此,程序整体框架确定。伪代码为:

if (所有元素的最大公约数 > 1) return -1
if (1 的个数 > 0) return n - (1 的个数)
操作 count 次得到原始的 “1”
return count + n - 1

接下来,我们需要思考如何计算出操作出原始 “1” 的最小次数:

回归到原问题操作,我们在每次操作中可以将一个数修改为最大公约数,那么对于连续的一段子数组(长度为 subSize),我们总可以用 subSize - 1 次操作将其中一个数变为整个子数组的最大公约数。如果这个最大公约数是 1,那么操作次数正好是 subSize - 1,反之无法操作出 1。

至此,可以想出暴力解法:

题解一(暴力枚举子数组)

在暴力解法中,我们枚举所有子数组,记录出所有子数组操作出原始 “1” 的最少操作次数。

class Solution {
fun minOperations(nums: IntArray): Int {
val n = nums.size
// 1 的个数
var cnt1 = 0
var gcbAll = 0
for (x in nums) {
gcbAll = gcb(gcbAll, x)
if (x == 1) cnt1++
}
// 所有数的最大公约数大于 1
if (gcbAll > 1) return -1
// 1 的个数大于 0
if (cnt1 > 0) return n - cnt1 // 操作出原始 “1” 的最小次数
var minCount = n
// 枚举子数组
for (i in 0 until n) {
var gcb = 0
for (j in i until n) {
gcb = gcb(gcb, nums[j])
if (gcb == 1) {
minCount = Math.min(minCount, j - i /* 子数组长度 - 1 */)
break // 继续枚举 i 为起点的子数组不会得到更优解
}
}
}
return minCount + n - 1
} // 求 x 和 y 的最大公约数(辗转相除法)
private fun gcb(x: Int, y: Int): Int {
var a = x
var b = y
while (b != 0) {
val temp = a % b
a = b
b = temp
}
return a
}
}

复杂度分析:

  • 时间复杂度:$O(n·(n + logU))$ 其中 n 是 nums 数组的长度,U 是数组元素的最大值。单次 GCD 计算的时间复杂度是 $O(logU)$,乍看起来算法整体的时间复杂度是 $O(n^2·logU)$,其实不对。因为在每层循环中,每次 GCD 计算并不是独立的,而是贯穿整个内层循环的,所以 GCD 的总时间取决于数据的最大值 U,在辗转相除中取余的次数也取决于 U。
  • 空间复杂度:$O(1)$ 不考虑结果数组,仅使用常量级别空间。

题解一的复杂度是平方级别的,如果放大题目数据量到 10^5 要怎么做?

问题抽象

在分析暴力解法的重复计算之前,我先向你抛出一个 “题外话”:

请你回答:“给定一个整数数组 nums 和目标和 k,如何求和为 k 的最短子数组?”

  • 解法 1:暴力枚举所有子数组,记录出所有子数组和为 k 的最短子数组长度(这与题解一暴力枚举子数组求操作出原始 “1” 的最少操作次数类似);
  • 解法 2:我们从左向右线性遍历,并维护以 num[j] 为右端点的前缀和映射表 。在此基础上,我们将当前位置 nums[i] 的前缀和与前缀和映射表中的每个元素取差值,就可以快速地获得以 num[i] 为右端点所有子数组的和。另外,由于我们是从左向右遍历的,所以前缀和映射表记录的索引正好是可以构造最短子数组的索引,子数组长度为 i - j + 1(当然,我们可以直接 O(1) 查询目标前缀和出现时的索引,而不需要真的用前缀和映射表的每个元素取差值)。

注:这个 “题外话” 与 LeetCode 560. 和为 K 的子数组 类似,如果你不熟悉可以先做做看。

那么,这个 “题外话” 与今天这道题有什么关系:

根据 GCB 运算的性质,当我们以 nums[i] 为左端点,不断向右扩展子数组的右端点时,我们的目标是求 “GCB 为 1 的子数组” 对吧。与 “求和为 k 的最短子数组” 类似,我们可以维护以 nums[j] 为左端点的 GCB 映射表 <gcb to 左端点 index>。在此基础上,我们将当前位置 nums[i] 与 GCB 映射表中的每个元素取 GCB,就可以快速的获得以 nums[i] 为右端点的所有子数组的 GCB。

那听起来这个算法依然是 O(n^2)?不对。

原因在题解一的时间复杂度分析中讲到了,因为每次 GCD 计算并不是独立的,而是贯穿整个循环的,GCB 映射表的大小取决于数据的最大值 U,而不是数据量,最多有 logU 种 GCB。因此优化后算法的时间复杂度是 O(n·lgU),但增加了空间复杂度为 O(lgU)。

示意图

题解二(有序集合)

至此,在题解一的基础上修改 “枚举子数组计算操作出原始 “1” 的最小次数” 不分代码即可:

class Solution {
fun minOperations(nums: IntArray): Int {
// 略... // 计算操作出原始 “1” 的最小次数
var minCount = n
// gcb 散列表 <gcd to 左端点 index>
var gcbMap = TreeMap<Int, Int>()
// 枚举子数组
for (i in 0 until n) {
val newGcbMap = TreeMap<Int, Int>()
// 枚举 gcb 映射表
for ((gcb, index) in gcbMap) {
newGcbMap[gcb(gcb, nums[i])] = index
}
newGcbMap[nums[i]] = i
// 检查最小的 gcb 是否为 1
val minEntry = newGcbMap.firstEntry()
if (1 == minEntry.key) {
minCount = Math.min(minCount, i - minEntry.value /* 子数组长度 - 1 */)
}
gcbMap = newGcbMap
}
return minCount + n - 1
} // 求 x 和 y 的最大公约数
private fun gcb(x: Int, y: Int): Int {
// 略...
}
}

复杂度分析:

  • 时间复杂度:$O(n·lgU·lg(lgU))$ 由于使用了有序集合,所以每一轮迭代中要算上排序时间 $O(lgU·lg(lgU))$;
  • 空间复杂度:$O(lgU)$ GCB 映射表空间。

题解三(单调性优化)

思路参考:灵茶山艾府的题解

题解二的时间复杂度比我们分析的复杂度略要一些,如何寻找优化空间?

继续分析 GCB 的数据特征,可以发现:当我们从左向右遍历时,随着子数组的长度增大,子数组的 GCB 要么不变,要么变小,存在 单调性。 所以,我们并不需要维护有序集合,GCB 列表中最靠前的元素一定是最小的 GCB。

class Solution {
fun minOperations(nums: IntArray): Int {
// 略... // 计算操作出原始 “1” 的最小次数
var minCount = n
// gcb 列表 <gcd to 左端点 index>
var gcbs = ArrayList<IntArray>()
// 枚举子数组
for (i in 0 until n) {
val newGcbs = ArrayList<IntArray>()
// 枚举 gcb 列表
for (element in gcbs) {
val gcb = gcb(element[0], nums[i])
if (newGcbs.isEmpty() || newGcbs[newGcbs.size - 1][0] != gcb) {
// 增加 GCB
newGcbs.add(intArrayOf(gcb, element[1]))
} else {
// 原地去重
newGcbs[newGcbs.size - 1][1] = element[1]
}
}
newGcbs.add(intArrayOf(nums[i], i))
// 检查最小的 gcb 是否为 1
val minEntry = newGcbs[0]
if (1 == minEntry[0]) {
minCount = Math.min(minCount, i - minEntry[1] /* 子数组长度 - 1 */)
}
gcbs = newGcbs }
return minCount + n - 1
} // 求 x 和 y 的最大公约数
private fun gcb(x: Int, y: Int): Int {
// 略...
}
}

复杂度分析:

  • 时间复杂度:$O(n·lgU)$
  • 空间复杂度:$O(lgU)$

相似题目:


LeetCode 周赛 342(2023/04/23)容斥原理、计数排序、滑动窗口、子数组 GCB的更多相关文章

  1. Java实现 LeetCode 757 设置交集大小至少为2(排序+滑动窗口)

    757. 设置交集大小至少为2 一个整数区间 [a, b] ( a < b ) 代表着从 a 到 b 的所有连续整数,包括 a 和 b. 给你一组整数区间intervals,请找到一个最小的集合 ...

  2. [LeetCode]3. 无重复字符的最长子串(滑动窗口)

    题目 给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度. 示例 1: 输入: "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 "abc ...

  3. 算法-java代码实现计数排序

    计数排序   第10节 计数排序练习题 对于一个int数组,请编写一个计数排序算法,对数组元素排序. 给定一个int数组A及数组的大小n,请返回排序后的数组. 测试样例: [1,2,3,5,2,3], ...

  4. counting sort 计数排序

    //counting sort 计数排序 //参考算法导论8.2节 #include<cstdio> #include<cstring> #include<algorit ...

  5. 第2章 排序 | 第10节 计数排序练习题 && 基数排序

    对于一个int数组,请编写一个计数排序算法,对数组元素排序. 给定一个int数组A及数组的大小n,请返回排序后的数组. 测试样例: [1,2,3,5,2,3],6 [1,2,2,3,3,5] 计数排序 ...

  6. 【leetcode】239. 滑动窗口最大值

    目录 题目 题解 三种解法 "单调队列"解法 新增.获取最大值 删除 代码 题目 给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以 ...

  7. 【Leetcode周赛】从contest-111开始。(一般是10个contest写一篇文章)

    Contest 111 (题号941-944)(2019年1月19日,补充题解,主要是943题) 链接:https://leetcode.com/contest/weekly-contest-111 ...

  8. http://www.cnblogs.com/peida/archive/2013/04/23/3036035.html

    http://www.cnblogs.com/peida/archive/2013/04/23/3036035.html

  9. LeetCode 第 342 题(Power of Four)

    LeetCode 第 342 题(Power of Four) Given an integer (signed 32 bits), write a function to check whether ...

  10. LeetCode 第 342 题(Power of Four)

    LeetCode 第 342 题(Power of Four) Given an integer (signed 32 bits), write a function to check whether ...

随机推荐

  1. shortcuts

    关闭选项卡 Ctrl+W 关闭当前窗口 alt + F4 alt + 空格 + c alt + 空格 + n 最小化窗口 alt + 空格 + x 最大化窗口 ALT+F4 关闭当前应用程序 ctrl ...

  2. 磊磊零基础打卡算法:day19 c++字符串hash

    5.22 字符串hash: 字符哈希串的意思 其实就是将字符串的前缀转换为数来存值由于每位的权值是不一样的 所以每个前缀值都对应着唯一的一种字符串: 主要用途:字符串/数据的比较,是kmp的一种替代: ...

  3. Surge 开启脚本功能后,京东自动签到总结

    本人小白,花费半天时间才弄好,写下这个给自己和后来人指路. Surge 开启脚本功能后,京东自动签到获取京豆总结: 1.注意 去 Raw 真实地址下载 js https://github.com/No ...

  4. 1.3Dmax界面_试图操作

    一.初始界面 1.菜单栏(软件的核心) 2.工具栏 3.石墨工具 4.命令板块 5.场景大纲 tools--> new Scene Explorer 创建的物体信息就会从出现在这里 6.视图窗口 ...

  5. 第3章---数据探索(python数据挖掘)

    1.缺失值分析及箱型图 数据:catering_sale.xls(餐饮日销额数) 缺失值使用函数:describe()函数,能算出数据集的八个统计量 import pandas as pd cater ...

  6. Jmeter读取Csv文件,字段中有逗号分隔,读取不成功

    Jmeter读取Csv文件,字段中有逗号分隔,读取不成功

  7. Windows下Zookeeper安装使用

    Windows下Zookeeper安装使用 ZooKeeper是一种分布式协调服务,用于管理大型主机. 在分布式环境中协调和管理服务是一个复杂的过程. ZooKeeper通过其简单的架构和API解决了 ...

  8. 狂神说SpringBoot笔记之编写一个http接口

    编写一个http接口 1.1.在主程序的同级目录下,新建一个controller包,一定要在同级目录下,否则识别不到 2.代码 1 package com.example.app01.demo.api ...

  9. Swust OJ977: 统计利用先序遍历创建的二叉树中的空链域个数

    题目描述 利用先序递归遍历算法创建二叉树并计算该二叉树中的空链域个数. 输入 输入为接受键盘输入的由大写英文字符和"#"字符构成的一个字符串(用于创建对应的二叉树). 输出 输出该 ...

  10. 记一个jdbc创建数据库、用户操作时,创建新用户提示CREATE USER权限问题

    手写存储表数据库信息,访问链接动态数据源操作: mysql: 1.root登录服务器 进入数据库 mysql -u root -p2.创建数据库 create database shop; shop ...