鸢尾花数据集的导入及查看:

①鸢尾花数据集的导入:

from sklearn.datasets import load_iris

②查看鸢尾花数据集:

iris=load_iris()
print("鸢尾花数据集:\n",iris)
print("查看数据集描述:\n", iris.DESCR)
print("查看特征值的名字:\n",iris.feature_names)
print("查看特征数据:\n",iris.data,iris.data.shape)
print("查看目标值名字:\n",iris.target_names)
print("查看目标数据:\n",iris.target)

划分数据集:

①导入train_test_split包:

from sklearn.model_selection import train_test_split

②划分数据集:数据集划分为训练集和测试集

x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.2)

注:iris.data为数据集的特征值,iris.target为数据集的目标值,test_size为测试值的划分比例(可省,默认为0.25),

  x_train:训练集的特征值

  x_test:测试集的特征值

  y_train:训练集的目标值

  y_test:测试集的特征值

完整代码:

from sklearn.datasets import load_iris     #导入数据集
from sklearn.model_selection import train_test_split def datatest():
# 获取数据集
iris=load_iris()
print("鸢尾花数据集:\n",iris)
print("查看数据集描述:\n", iris.DESCR)
print("查看特征值的名字:\n",iris.feature_names)
print("查看特征数据:\n",iris.data,iris.data.shape)
print("查看目标值名字:\n",iris.target_names)
print("查看目标数据:\n",iris.target) # 划分数据集
x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.2)
print(x_train,x_train.shape)
print(x_test,x_test.shape)
print(y_train,y_train.shape)
print(y_test,y_test.shape)
if __name__ == '__main__':
datatest()

sklearn数据集的导入及划分的更多相关文章

  1. sklearn数据集划分

    sklearn数据集划分方法有如下方法: KFold,GroupKFold,StratifiedKFold,LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,L ...

  2. 【学习笔记】sklearn数据集与估计器

    数据集划分 机器学习一般的数据集会划分为两个部分: 训练数据:用于训练,构建模型 测试数据:在模型检验时使用,用于评估模型是否有效 训练数据和测试数据常用的比例一般为:70%: 30%, 80%: 2 ...

  3. 机器学习笔记(四)--sklearn数据集

    sklearn数据集 (一)机器学习的一般数据集会划分为两个部分 训练数据:用于训练,构建模型. 测试数据:在模型检验时使用,用于评估模型是否有效. 划分数据的API:sklearn.model_se ...

  4. sklearn数据集

    数据集划分: 机器学习一般的数据集会划分为两个部分 训练数据: 用于训练,构建模型 测试数据: 在模型检验时使用,用于评估模型是否有效 sklearn数据集划分API: 代码示例文末! scikit- ...

  5. Sklearn数据集与机器学习

    sklearn数据集与机器学习组成 机器学习组成:模型.策略.优化 <统计机器学习>中指出:机器学习=模型+策略+算法.其实机器学习可以表示为:Learning= Representati ...

  6. 13_数据的划分和介绍之sklearn数据集

    1.数据集是如何划分?训练数据和评估数据不能使用相同数据,不然自己测自己,会使得准确率虚高,在遇到陌生数据时,不够准确. 2.数据集的获取: 通过load或者fetch方法. 3.数据集进行分割: 训 ...

  7. sklearn——数据集调用及应用

    忙了许久,总算是又想起这边还没写完呢. 那今天就写写sklearn库的一部分简单内容吧,包括数据集调用,聚类,轮廓系数等等.   自带数据集API 数据集函数 中文翻译 任务类型 数据规模 load_ ...

  8. SKLearn数据集API(一)

    注:本文是人工智能研究网的学习笔记 数据集一览 类型 获取方式 自带的小数据集 sklearn.datasets.load_ 在线下载的数据集 sklearn.datasets.fetch_ 计算机生 ...

  9. SKLearn数据集API(二)

    注:本文是人工智能研究网的学习笔记 计算机生成的数据集 用于分类任务和聚类任务,这些函数产生样本特征向量矩阵以及对应的类别标签集合. 数据集 简介 make_blobs 多类单标签数据集,为每个类分配 ...

随机推荐

  1. carsim输入输出变量

    来自:https://wenku.baidu.com/view/3405ded5443610661ed9ad51f01dc281e43a5673.html 输出量

  2. html5不熟悉的标签全称

    <dl></dl> 定义列表(英文全称:DefinitionList) <dt> 放在每个定义术语词前(定义术语.英文全称:DefinitionTerm) 名称 & ...

  3. Python窗口学习之监听窗口变化触发函数

    在窗口大小发生变化后,往往组件也需要调整 代码: #空间适应屏幕 def window_resiz(self,event=None): print(window.winfo_height()) pri ...

  4. ccf201912-1 报数 C++代码实现

    代码实现: #include<iostream> using namespace std; /*题目限制为三位数*/ /*思路: 1.用一个长度为4的数组(初值为0)保存每个人分别跳过了几 ...

  5. EMS导入导出邮箱

    Exchange支持EMS命令导出用户邮箱内容作为备份的功能.当重要用户的邮件误删除后,可以通过导出的邮箱恢复数据. 1.授权管理用户 Exchange默认安装完成后,内置"Mailbox ...

  6. nodejs制作爬虫程序

    在nodejs中,可以通过不断对服务器进行请求,以及本身的fs  =>filesystem 模块和clientRequest模块对网站的资源进行怕取,目前只做到了对图片的趴取!视频文件格式各异, ...

  7. 利用Docker快速部署Mysql

    写在前面 我又来更新了~~~,今天内容较少,主要是利用Docker快速部署Mysql和初始化数据 利用Docker下载Mysql 简洁明了,在命令提示符中输入 docker pull mysql:8. ...

  8. Mybatsi注解开发-基础操作

    1.导入坐标 <dependency> <groupId>com.github.pagehelper</groupId> <artifactId>pag ...

  9. SpringMVC获取请求参数-基本类型

    1.Controller中的业务方法的参数名称要与请求参数的name一致,参数值会自动映射匹配 (json形式) <dependency> <groupId>com.faste ...

  10. LC-1

    Two Sum Given an array of integers nums and an integer target, return indices of the two numbers suc ...