108_Power Pivot购物篮分析分组GENERATE之笛卡尔积、排列、组合
博客:www.jiaopengzi.com
1、背景
昨天在看论坛帖子时候(帖子),看到一个关于SKU组合的问题,有很多M大佬都给出了处理方案,于是想用dax也写一个。
注:
原贴有dax的写法,这里主要说明下GENERATE之笛卡尔积、排列、组合处理过程。
上效果图

2、问题
1、大前提是使我们要使用data的数据做购物篮分析分组;
2、在问题1已的基础上,笛卡尔积表(5*5)存在类似黄色区域问题,SKU两两相同,这是不需要看到的;
3、在问题1的基础上,排列表(见图中公式)存在类似绿色区域的问题,SKU1对SKU2和SKU2对SKU1其实是一样的,这也是我们不需要看到的;
4、基于以上,我们通过笛卡尔积-排列-组合这样 处理下来得到我们要的购物篮分组。
3、上DAX
1、笛卡尔积

DEFINE
VAR T1 =
SELECTCOLUMNS ( data, "SKUA", data[SKU] )
VAR T2 =
SELECTCOLUMNS ( data, "SKUB", data[SKU] )
VAR T3 =
GENERATE ( T1, T2 )
EVALUATE
T3
ORDER BY
[SKUA],
[SKUB] ASC
2、排列

DEFINE
VAR T1 =
SELECTCOLUMNS ( data, "SKUA", data[SKU] )
VAR T2 =
SELECTCOLUMNS ( data, "SKUB", data[SKU] )
VAR T3 =
GENERATE ( T1, T2 )
VAR T4 =
FILTER ( T3, [SKUA] <> [SKUB] )
EVALUATE
T4
ORDER BY
[SKUA],
[SKUB] ASC
4、组合

DEFINE
VAR T1 =
SELECTCOLUMNS ( data, "SKUA", data[SKU] )
VAR T2 =
SELECTCOLUMNS ( data, "SKUB", data[SKU] )
VAR T3 =
GENERATE ( T1, T2 )
VAR T4 =
FILTER ( T3, [SKUA] <> [SKUB] )
VAR T5 =
DISTINCT (
SELECTCOLUMNS (
ADDCOLUMNS (
T4,
"AB", IF ( [SKUA] < [SKUB], [SKUA] & [SKUB], [SKUB] & [SKUA] )
),
"AB", [AB]
)
)
VAR T6 =
FILTER ( ADDCOLUMNS ( T4, "AB", [SKUA] & [SKUB] ), [AB] IN T5 )
VAR T7 =
SUMMARIZE ( T6, [SKUA], [SKUB] )
EVALUATE
T7
ORDER BY
[SKUA],
[SKUB] ASC
4、总结
1、以上问题基于购物篮分析产生,所以需要组合结果;
2、在实际需求中肯定这三种都是有需求的;
3、处理GENERATE,两列名称不能相同,于是有了上述的GENERATE ( T1, T2 ),而不是GENERATE ( T1, T1);
4、处理从排列到组合的思路主要是利用两两组合排序后去重即可,分步体会从T1-T7的过程。
by 焦棚子
108_Power Pivot购物篮分析分组GENERATE之笛卡尔积、排列、组合的更多相关文章
- 数据算法 --hadoop/spark数据处理技巧 --(5.移动平均 6. 数据挖掘之购物篮分析MBA)
五.移动平均 多个连续周期的时间序列数据平均值(按相同时间间隔得到的观察值,如每小时一次或每天一次)称为移动平均.之所以称之为移动,是因为随着新的时间序列数据的到来,要不断重新计算这个平均值,由于会删 ...
- Apriori算法在购物篮分析中的运用
购物篮分析是一个很经典的数据挖掘案例,运用到了Apriori算法.下面从网上下载的一超市某月份的数据库,利用Apriori算法进行管理分析.例子使用Python+MongoDB 处理过程1 数据建模( ...
- R语言和数据分析十大:购物篮分析
提到数据挖掘,我们的第一个反应是之前的啤酒和尿布的故事听说过,这个故事是一个典型的数据挖掘关联规则.篮分析的传统线性回归之间的主要差别的差别,对于离散数据的相关性分析: 常见的关联规则: 关联规则:牛 ...
- 数据挖掘算法之-关联规则挖掘(Association Rule)(购物篮分析)
在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结. 首先,和聚类算法一样,关联规则挖掘属于无监督学习方 ...
- 关联规则之Aprior算法(购物篮分析)
0.支持度与置信度 <mahout实战>与<机器学习实战>一起该买的记录数占所有商品记录总数的比例——支持度(整体) 买了<mahout实战>与<机器学习实战 ...
- 016 Spark中关于购物篮的设计,以及优化(两个点)
一:介绍 1.购物篮的定义 2.适用场景 3.相关概念 4.步骤 5.编程实现 6.步骤 二:程序 1.程序 package com.ibeifeng.senior.mba.association i ...
- 购物篮模型&Apriori算法
一.频繁项集 若I是一个项集,I的支持度指包含I的购物篮数目,若I的支持度>=S,则称I是频繁项集.其中,S是支持度阈值. 1.应用 "尿布和啤酒" 关联概念:寻找多篇文章中 ...
- 购物篮算法的理解-基于R的应用
是无监督机器学习方法,用于知识发现,而非预测,无需事先对训练数据进行打标签,因为无监督学习没有训练这个步骤.缺点是很难对关联规则学习器进行模型评估,一般都可以通过肉眼观测结果是否合理. 一,概念术语 ...
- SQL语句汇总(三)——聚合函数、分组、子查询及组合查询
聚合函数: SQL中提供的聚合函数可以用来统计.求和.求最值等等. 分类: –COUNT:统计行数量 –SUM:获取单个列的合计值 –AVG:计算某个列的平均值 –MAX:计算列的最大值 –MIN:计 ...
随机推荐
- 实现自定义的小程序底部tabbar
背景 诶,当然是为了实现更有温度的代码啦(背后设计师拿着刀对着我) 自带tabbar app.json中配置: tabBar: { backgroundColor: '#fff', borderSty ...
- D2Admin 8月更新: 高级数据持久化|标签页右键|模块化等
剧透:这次,D2Admin 带来了其它同类模板都没有的"花式"数据持久化功能,以及极少同类产品才有的标签页右键控制... 概述 D2Admin 7月份更新到了 1.1.5 版本 相 ...
- 原生ES6写的Web游戏:ES6-Mario,小美女,小帅哥快来玩啊~~
? ES6-Mario 这是一个用原生ES6语法和HTML5新特性写成的Web 游戏. 通过这个项目,你可以在实践中对ES6的主要内容.HTML Canvas 相关API以及Webpack的基础配置有 ...
- Go 里面的 ^ 和 &^
这几天在研究 Go 的源码,突然发现了一个之前没有见过的位运算,见这里 new &^= mutexWoken & 和 ^,分别表示 AND 和 XOR,这个不用多说. 值得一提的是 ^ ...
- C# 语法糖测试--未完待续
/// <summary> /// string扩展方法,可以用字符串变量加.的形式直接调用,this是关键 /// </summary> public static clas ...
- java中封装encapsulate的概念
封装encapsulate的概念:就是把一部分属性和方法非公有化,从而控制谁可以访问他们. https://blog.csdn.net/qq_44639795/article/details/1018 ...
- 使用pyttsx3实现简单tts服务
操作系统:Windows 10_x64 python版本:Python 3.9.2_x64 pyttsx3版本: 2.90 pyttsx3是一个tts引擎包装器,可对接SAPI5.NSSS(NSS ...
- 变量 数据类型 条件if语句
python是解释型 弱类型编程语言; "优雅", "明确", "简单"; 开发效率非常高; 可移植性; 可扩展性; 可嵌入型. ...
- android软件简约记账app开发day03-自定义键盘的书写
android软件简约记账app开发day03-自定义键盘的书写 我们在fragment界面使用了自定义的keybroad键盘,所以今天我们来书写自定义的键盘代码 新建util包,新建keyboard ...
- 事务的隔离级别与MVCC
提到数据库,你多半会联想到事务,进而还可能想起曾经背得滚瓜乱熟的ACID,不知道你有没有想过这个问题,事务有原子性.隔离性.一致性和持久性四大特性,为什么偏偏给隔离性设置了级别? 一切还得从事务说起. ...