拉格朗日插值优化DP

模拟赛出现神秘插值,太难啦!!

回忆拉格朗日插值是用来做什么的

对于一个多项式\(F(x)\),如果已知它的次数为\(m - 1\),且已知\(m\)个点值,那么可以得到

\[F(k) = \sum_{i=1}^{m} y_i \prod_{i \neq j} \frac{k-x_j}{x_i - x_j}
\]

所以,如果我们知道要求的东西是一个次数比较友好的多项式且容易求出一些点值,那么就可以把答案插出来。

来看两道例题

CF995F Cowmpany Cowmpensation

题意:给你一棵树,要求给每个点分配\([1,d]\)内的权值,且儿子的权值不能超过父亲的权值,对\(10^9+7\)取模,\(D\leq 10^9\)

很容易得到一个\(\text{DP}\),设\(f_{u,i}\)表示u子树内u的权值大于等于\(i\)的答案,那么

\[f_{u,i} = \prod_v f_{v,i} + f_{u,i + 1}
\]

但是\(i\)的值域是\([1,D]\),根本做不了,怎么办?

拉格朗日插值登场。

假设\(u\)是一个叶子结点,那么\(f_{u,i} = D - i + 1\)是一个关于\(i\)的一次多项式

由于转移方程是简单的乘法和加法的形式,可以看出来\(f_{u,i}\)就是一个关于\(i\)的多项式,到这里我们需要考虑的就是这个多项式的次数是多少。

设\(g_u\)表示\(f_{u,i}\)的次数,那么根据上面的状态转移方程,可以得到

\[f_{u,i} - f_{u, i + 1} = \prod_v f_{v,i}
\]

根据多项式基础知识,一个多项式差分,次数减一;多个多项式相乘,子树相加,那么就有

\[g_u - 1 = \sum_v g_v \Rightarrow g_u = sz_u
\]

这里\(sz_u\)表示\(u\)子树的大小

所以答案就是一个关于\(d\)的\(n\)次多项式,求出\(n+1\)个点值后即可使用拉格朗日插值得到答案。

点我看代码 (-o⌒) ☆
#include <cstdio>
#include <vector>
#include <iostream>
#define LL long long
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ 48);
if(f) x = ~x + 1;
}
const int N = 3010;
const LL P = 1e9 + 7;
int n, d, m;
int f[N][N << 1];
int y[N << 1];
vector <int> G[N];
void dfs(int u) {
for(int i = 1; i <= m; ++i) f[u][i] = 1;
for(auto v : G[u]) {
dfs(v);
for(int i = m; i ; --i)
f[u][i] = 1ll * f[u][i] * f[v][i] % P;
}
for(int i = m - 1; i ; --i) f[u][i] = (f[u][i] + f[u][i + 1]) % P;
}
LL fpow(LL x, int pnt = P - 2) {
LL res = 1;
for(; pnt; pnt >>= 1, x = x * x % P) if(pnt & 1) res = res * x % P;
return res;
}
int Lagrange(int x) {
if(1 <= x && x <= m) return y[x];
LL res = 0;
for(int i = 1; i <= m; ++i) {
LL p = y[i], q = 1;
for(int j = 1; j <= m; ++j)
if(i ^ j) p = p * (x - j) % P, q = q * (i - j) % P;
res = (res + p * fpow(q)) % P;
}
return res;
}
int main() {
read(n), read(d);
for(int i = 2, u; i <= n; ++i) {
read(u);
G[u].emplace_back(i);
}
m = n + 1;
dfs(1);
for(int i = 1; i <= m; ++i) y[m - i + 1] = f[1][i];
printf("%d\n",Lagrange(d));
}

[集训队互测 2012] calc

经典题

\(\text{DP}\)还是很容易,首先由于互不相等,先转化成\(a_i\)有序,然后设\(f_{i,j}\)表示已经填了\(i\)个数,值域为\([1,j]\),转移方程就是

\[f_{i,j} = jf_{i - 1,j - 1} + f_{i, j - 1}
\]

按照上面的方法,设\(g_i\)为关于\(j\)的多项式\(f_{i,j}\)的次数,那么有

\[g_i - 1 = g_i + 1 \Rightarrow g_i = 2i
\]

然后\(f_{n,i}\)的次数就是\(2n\),求\(2n+1\)个点就能把答案插出来了

点我看代码☆ ̄(>。☆)
#include <cstdio>
#include <iostream>
#define LL long long
using namespace std;
template <typename T>
inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = (x << 3) + (x << 1) + (ch ^ 48);
if(f) x = ~x + 1;
}
const int N = 510;
int k, n, m;
LL P, y[N << 1], f[N][N << 1];
LL fpow(LL x, int pnt = P - 2) {
LL res = 1;
for(; pnt; pnt >>= 1, x = x * x % P) if(pnt & 1) res = res * x % P;
return res;
}
LL Lagrange(int x) {
if(1 <= x && x <= m) return y[x];
LL res = 0;
for(int i = 1; i <= m; ++i) {
LL p = y[i], q = 1;
for(int j = 1; j <= m; ++j)
if(j != i) p = p * (k - j) % P, q = q * (i - j) % P;
if(p < 0) p += P; if(q < 0) q += P;
res = (res + p * fpow(q)) % P;
}
return res;
}
int main() {
read(k), read(n), read(P), m = (n << 1) + 1;
LL fac = 1; for(int i = 1; i <= n; ++i) fac = fac * i % P;
for(int i = 0; i <= m; ++i) f[0][i] = 1;
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j)
f[i][j] = (f[i - 1][j - 1] * j + f[i][j - 1]) % P;
for(int i = 1; i <= m; ++i) y[i] = f[n][i];
printf("%d\n",fac * Lagrange(k) % P);
}

总结

拉格朗日插值优化\(\text{DP}\)是一种优化思路,在值域比较大,容易求点值的时候可以考虑,上面给出的例子比较简单,需要在遇到具体问题时具体考虑。

拉格朗日插值优化DP的更多相关文章

  1. BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记

    BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...

  2. jzoj5683. 【GDSOI2018模拟4.22】Prime (Min_25筛+拉格朗日插值+主席树)

    题面 \(n\leq 10^{12},k\leq 100\) 题解 一眼就是一个\(Min\_25\)筛+拉格朗日插值优化,然而打完之后交上去发现只有\(60\)分 神\(tm\)还要用主席树优化-- ...

  3. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

  4. P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析

    LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...

  5. 【BZOJ2655】calc DP 数学 拉格朗日插值

    题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1, ...

  6. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  7. 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值

    [题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...

  8. BZOJ4599[JLoi2016&LNoi2016]成绩比较(dp+拉格朗日插值)

    这个题我们首先可以dp,f[i][j]表示前i个科目恰好碾压了j个人的方案数,然后进行转移.我们先不考虑每个人的分数,先只关心和B的相对大小关系.我们设R[i]为第i科比B分数少的人数,则有f[i][ ...

  9. bzoj 4559 [JLoi2016]成绩比较 —— DP+拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 看了看拉格朗日插值:http://www.cnblogs.com/ECJTUACM-8 ...

随机推荐

  1. WPF 截图控件之移除控件(九)「仿微信」

    WPF 截图控件之移除控件(九)「仿微信」 WPF 截图控件之移除控件(九)「仿微信」 作者:WPFDevelopersOrg 原文链接: https://github.com/WPFDevelope ...

  2. Linxu用户名验证登录MySQL管理数据库

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 前情介绍: 我们都知道登录MySQL数据库时,连接层接入数据库需要经过mysql.user表中,用户名密码的验证才能登录数 ...

  3. Spring提供的API实现文件上传

    Spring为我们提供了文件上传接口MultipartRequest及其实现类StandardMultipartFile StandardMultipartFile是StandardMultipart ...

  4. Jmeter工具使用总结

    Jmeter工具使用总结 目录 Jmeter函数总结 第一章 前言 第二章 常用函数的介绍 2.1. timeShift函数 2.2. time函数 2.3. groovy函数 第三章 常用用法 3. ...

  5. PyTorch中的CUDA操作

      CUDA(Compute Unified Device Architecture)是NVIDIA推出的异构计算平台,PyTorch中有专门的模块torch.cuda来设置和运行CUDA相关操作.本 ...

  6. 【java】学习路径42-六种字符流使用实例

    第一种 OutputStreamWriter OutputStreamReader 第二种 FileWriter FileReader 第三种 BufferedWriter BufferedReade ...

  7. C#通过反射实现简单的控制反转和依赖注入(一)

    Java项目中通过@Autowire便可以实现将对象实例化到指定的字段,无需手动new一个对象出来,用起来非常方便,因为Java类加载器在在加载过程会将扫描所有@Servie.@Mapper.@Com ...

  8. BI如何配置“花生壳”,看这一篇就够了

    花生壳作为一款免费的内网穿透软件,在软件行业备受青睐.在做好产品的同时,如何让客户轻松看到,也是非常有必要的.本篇将带领大家使用"花生壳"软件完成BI数据分析的配置.第一步:下载安 ...

  9. 抛砖系列之git仓库拆分工具git-filter-repo

    最近负责把团队内的git仓库做了一次分拆,解锁一个好用的工具git-filter-repo,给大伙抛砖一波,希望以后遇到类似场景时可以信手拈来. 背景 笔者团队目前是把业务相关的java项目都放到了一 ...

  10. Trigger Before 与 After 区别

    用户在使用trigger时,经常会面临before or after的选择问题.二者有什么区别?从字面理解,before trigger 是在触发操作完成之前完成,而after 是在触发操作完成之后完 ...