JZOJ 2483. 【GDKOI 2021提高组DAY1】回文(palindrome)
题目
求区间最长回文串长度
\(1 \le n\le 5 \times 10^5\)
题解
比较妙的做法,主要是在询问部分
预处理出以某位为中心回文半径长 \(p_i\),马拉车和二分+哈希均可
然后考虑询问区间 \([l..r]\)
二分一个答案半径,\(\text st\) 表维护 \([l_{new}+mid-1,r_{new}-mid+1]\) 的 \(p\) 的最大值
于是就成了判定问题
\(Code\)
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N = 5e5 + 5;
int n, q, p[N << 1], lg[N << 1], f[N << 1][22];
char s[N], str[N << 1];
inline void read(int &x)
{
x = 0; int f = 1; char ch = getchar();
while (ch < '0' || ch > '9') f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
x *= f;
}
inline void manacher()
{
str[0] = '@', str[1] = '#', n = 2;
int len = strlen(s);
for(register int i = 0; i < len; i++) str[n++] = s[i], str[n++] = '#';
str[n] = '\0';
int mx = 0, id = 0;
for(register int i = 1; i <= n; i++)
{
p[i] = (i < mx ? min(p[2 * id - i], mx - i) : 1);
while (str[i + p[i]] == str[i - p[i]]) ++p[i];
if (i + p[i] > mx) mx = i + p[i], id = i;
}
}
inline int query(int i, int j)
{
if (i > j) return 0;
int k = lg[j - i + 1];
return max(f[i][k], f[j - (1 << k) + 1][k]);
}
inline void st_table()
{
for(register int i = 1; i <= n; i++) f[i][0] = p[i];
for(register int i = 2; i <= n; i++) lg[i] = lg[i - 1] + ((1 << (lg[i - 1] + 1)) == i ? 1 : 0);
for(register int j = 1; j <= lg[n]; j++)
for(register int i = 1; i + (1 << j) - 1 <= n; i++)
f[i][j] = max(f[i][j - 1], f[i + (1 << j - 1)][j - 1]);
}
int main()
{
freopen("palindrome.in", "r", stdin);
freopen("palindrome.out", "w", stdout);
scanf("%s%d", s, &q);
manacher(), st_table();
for(int l, r; q; --q)
{
read(l), read(r), l = (l << 1) - 1, r = (r << 1) + 1;
int ans = 1, L = 2, R = r - l + 1, mid;
while (L <= R)
{
mid = (L + R) >> 1;
if (query(l + mid - 1, r - mid + 1) >= mid) ans = mid, L = mid + 1;
else R = mid - 1;
}
printf("%d\n", ans - 1);
}
}
JZOJ 2483. 【GDKOI 2021提高组DAY1】回文(palindrome)的更多相关文章
- 【佛山市选2013】JZOJ2020年8月7日提高组T1 回文子序列
[佛山市选2013]JZOJ2020年8月7日提高组T1 回文子序列 题目 描述 回文序列是指左右对称的序列.例如1 2 3 2 1是回文序列,但是1 2 3 2 2就不是.我们会给定一个N×M的矩阵 ...
- JZOJ 3534. 【NOIP2013提高组day1】货车运输
Description A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的 ...
- luogu1003铺地毯[noip2011 提高组 Day1 T1]
题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...
- 18/9/9牛客网提高组Day1
牛客网提高组Day1 T1 中位数 这好像是主席树??听说过,不会啊... 最后只打了个暴力,可能是n2logn? 只过了前30% qwq #include<algorithm> #in ...
- Noip2011 提高组 Day1 T1 铺地毯 + Day2 T1 计算系数
Day1 T1 题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小 ...
- Noip2011 提高组 Day1 T3 Mayan游戏
题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...
- GZOJ 1361. 国王游戏【NOIP2012提高组DAY1】
国王游戏[NOIP2012提高组DAY1] Time Limit:1000MS Memory Limit:128000K Description 国王游戏(game.cpp/c/pas) [问题描述] ...
- [NOI Online 2021 提高组] 积木小赛
思路不说了. 想起来自己打比赛的时候,没睡好.随便写了个\(HASH\),模数开小一半分都没有. 然后学了\(SAM\),发现这个判重不就是个水题. \(SAM\)是字串tire的集合体. 随便\(d ...
- 【Python】回文palindrome——利用字符串反转
回文 palindrome Python 字符串反转string[::-1] Slice notation "[a : b : c]" means "count in i ...
- JZOJ 5196. 【NOIP2017提高组模拟7.3】B
5196. [NOIP2017提高组模拟7.3]B Time Limits: 1000 ms Memory Limits: 262144 KB Detailed Limits Goto Pro ...
随机推荐
- X活手环的表盘自定义修改
文章用到的所有工具及软件成品 前言 前几天我在某宝买了一个智能手环,无奈软件中的表盘太少,所有我想着修改一下app中的资源文件. 反编译APK 这里反编译APK用apktool工具就可以. apkto ...
- Permanently added the RSA host key for IP address '192.30.253.113' to the list of known hosts.
$git push origin master 报错: Warning: Permanently added the RSA host key for IP address '192.30.253.1 ...
- 关于tomcat8在windows2008下高并发下有关问题的解决方案
关于tomcat8在windows2008下高并发下问题的解决方案 因为客户服务器特殊的环境问题,只能使用windows2008r2服务器,然而配置过后,网站的高访问量很快就出现了各种问题,以下是解决 ...
- mysql-DuplicateUpdate和java的threadpool的"死锁"
大家千万不要被文章的标题给迷惑了,他两在本篇文章是没有关系的, 今天给大家讲讲最近2个有意思的issue,分享一下我学到的 mysql DuplicateUpdate的用法要注意的点 java的thr ...
- C++面向对象程序设计期末复习笔记[吉林大学](结合历年题速成85)
1.头文件 头文件的作用就是被其他的.cpp包含进去的.它们本身并不参与编译,但实际上,它们的内容却在多个.cpp文件中得到了编译.根据"定义只能一次"原则我们知道,头文件中不能放 ...
- Django框架三板斧本质-jsonResponse对象-form表单上传文件request对象方法-FBV与CBV区别
目录 一:视图层 2.三板斧(HttpResponse对象) 4.HttpResponse() 5.render() 6.redirect() 7.也可以是一个完整的URL 二:三板斧本质 1.Dja ...
- 实施 GitOps 的三个关键步骤
GitOps 是一种自动化和管理基础架构和应用程序的模型,通过许多团队已经使用的相同 DevOps 最佳实践来形成的模型,例如版本控制.代码审查和 CI/CD 流水线.在实施 DevOps 时,我们找 ...
- python函数及算法
算法二分法 二分算法图 什么是算法? 算法是高效解决问题的办法. 需求:有一个按照从小到大顺序排列的数字列表,查找某一个数字 # 定义一个无序的列表 nums = [3,4,5,67,8,9,12 ...
- 【机器学习】李宏毅——自注意力机制(Self-attention)
前面我们所讲的模型,输入都是一个向量,但有没有可能在某些场景中输入是多个向量,即一个向量集合,并且这些向量的数目并不是固定的呢? 这一类的场景包括文字识别.语音识别.图网络等等. 那么先来考虑输出的类 ...
- 手把手教你玩转 Excel 数据透视表
1. 什么是数据透视表 数据透视表是一种可以快速汇总.分析大量数据表格的交互式分析工具.使用数据透视表可以按照数据表格的不同字段从多个角度进行透视,并建立交叉表格,用以查看数据表格不同层面的汇总信息 ...