读论文SRCNN:Learning a Deep Convolutional Network for Image Super-Resolution
Learning a Deep Convolutional Network for Image Super-Resolution
SRCNN是深度学习应用于SR领域的开山之作。
Pytorch代码 与论文的细节设置有些不同。
实验细节总结:
1 数据集
set5:5张图片
set14:14张图片
用到的数据集为set5、set14、ImageNet。
其中,为和之前其他的方法保持相同的条件,先用91张图片作为训练集,set5、set14作为测试集,其中set5的5张图片用作x2x3x4的测试集,set14的14张图片用作x3的测试集。得出的模型效果比之前其他的方法更好。随后用ImageNet的大数据量训练(网络的参数发生了一些改变),得出训练数据集的增加,会给结果带来更好效果,同时训练时间和推理时间也会增加。
在文章的4 Experiments中,描述如下,
Datasets. For a fair comparison with traditional example-based methods, we use the same training set, test sets, and protocols as in [20].
Specifically, the training set consists of 91 images.
The Set5 [2] (5 images) is used to evaluate the performance of upscaling factors 2, 3, and 4, and Set14 [28] (14 images) is used to evaluate the upscaling factor 3.
In addition to the 91-image training set, we also investigate a larger training set in Section 5.2.
具体来说,训练集包含91张图片。set5的五张图片用来估计模型在上采样x2,x3,x4时的表现,set14用来估计模型在上采样x3的表现。除了91张图片之外,在5.2节也用了大数据集训练。
值得注意的是,文章中提出了sub-images(即子图)的概念。
在训练阶段,地面真实图像{Xi}是从训练图像中随机裁剪出来的32张32×32像素的子图像。我们所说的“子图像”是指这些样本被视为小的“图像”而不是“补丁”,在这个意义上,“补丁”是重叠的,需要一些平均作为后处理,但“子图像”不需要。为了合成低分辨率样本{Yi},我们用适当的高斯核模糊子图像,用放大因子进行子采样,并通过双边插值对相同的因子进行放大。这91张训练图像提供了大约24,800张子图像。子图像从原始图像中提取,步幅为14。我们尝试了较小的进步,但没有观察到显著的性能改善。从我们的观察来看,训练集足以训练所提出的深度网络。
2 实验流程
输入为32x32像素的子图sub-image,经过三层卷积,得到输出。
提前对输入input进行了双三次插值,所以网络的输入和输出是相同大小的。
第一层卷积的参数为:(kernel size)9x9,(input channel)1,(outputchannel)64
第二层卷积的参数为:1x1,64,32
第三层卷积的参数为:5x5,32,1
至于为什么第一层网络中输入通道为1,文章中这样说是为了和之前的方法进行对比,所以采用相同的通道数。
在[20]之后,我们在实验中只考虑亮度通道(在YCrCb颜色空间中),所以在第一/最后一层考虑c=1。
这两个色度通道仅为显示的目的而进行双边上采样,而不是用于训练/测试。
请注意,我们的方法可以通过设置c=3来扩展到直接的彩色图像训练。
我们使用c=1主要是为了与以前的方法进行公平的比较,因为大多数方法只涉及亮度通道。
步长s=1;训练时为避免边缘效应,无padding;测试时为保持和input image相同的大小,padding填充0。
所以,训练时的网络输出为20x20像素的子图。因为损失函数为MSE损失函数,所以调整损失函数为仅通过Xi(input image)的中心20×20与网络输出之间的差异来评估。
为了解决边界效应,在每个卷积层中,每个像素的输出(在ReLU之前)被有效输入像素的数量归一化,这可以预先计算。(ReLu激活之前归一化输入像素)
卷积核(kernel or filter)初始化为从一个均值为0,标准差为0.001(偏差为0)的高斯分布中随机抽取来初始化。
前两层的学习率为 \(10^{-4}\) ,最后一层的学习率为 \(10^{-5}\).作者通过经验发现,在最后一层的一个较小的学习速率对网络的收敛是很重要的(类似于去噪的情况[12])。
优化方式为普通的梯度下降SGD。
文章中没写epoch,batch-size。只写了训练 \(8 \times 10^8\) 个反向传播需要三天时间。
网络结构:
3 损失函数:MSE损失函数
其中,n为像素点的个数,F为网络的输出,X为网络的输入,i表示第i个图像。其中,训练集和测试集的计算方式有区别。
4 实验结果
表一 在set5数据集上的PSNR(dB)和测试时间(sec,秒)
表2 set14数据集上的PSNR(dB)和测试时间(sec)
5 实验配置
GTX 770 GPU
c++
IntelCPU3.10 GHz
16GB内存
读论文SRCNN:Learning a Deep Convolutional Network for Image Super-Resolution的更多相关文章
- 论文学习 :Learning a Deep Convolutional Network for Image Super-Resolution 2014
(Learning a Deep Convolutional Network for Image Super-Resolution, ECCV2014) 摘要:我们提出了一种单图像超分辨率的深度学习方 ...
- 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS ICLR 2 ...
- ASPLOS'17论文导读——SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing
今年去参加了ASPLOS 2017大会,这个会议总体来说我感觉偏系统和偏软一点,涉及硬件的相对少一些,对我这个喜欢算法以及硬件架构的菜鸟来说并不算非常契合.中间记录了几篇相对比较有趣的paper,今天 ...
- ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution
ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...
- Deep Learning 27:Batch normalization理解——读论文“Batch normalization: Accelerating deep network training by reducing internal covariate shift ”——ICML 2015
这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network tr ...
- 论文笔记(6):Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation
这篇文章的主要贡献点在于: 1.实验证明仅仅利用图像整体的弱标签很难训练出很好的分割模型: 2.可以利用bounding box来进行训练,并且得到了较好的结果,这样可以代替用pixel-level训 ...
- DCGAN: "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Network" Notes
- Alec Radford, ICLR2016 原文:https://arxiv.org/abs/1511.06434 论文翻译:https://www.cnblogs.com/lyrichu/p/ ...
- Discriminative Learning of Deep Convolutional Feature Point Descriptors 论文阅读笔记
介绍 该文提出一种基于深度学习的特征描述方法,并且对尺度变化.图像旋转.透射变换.非刚性变形.光照变化等具有很好的鲁棒性.该算法的整体思想并不复杂,使用孪生网络从图块中提取特征信息(得到一个128维的 ...
- 读论文Machine Learning for Improved Diagnosis and Prognosis in Healthcare
Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => ...
- Paper | Compression artifacts reduction by a deep convolutional network
目录 1. 故事 2. 方法 3. 实验 这是继SRCNN(超分辨)之后,作者将CNN的战火又烧到了去压缩失真上.我们看看这篇文章有什么至今仍有启发的故事. 贡献: ARCNN. 讨论了low-lev ...
随机推荐
- 【每日一题】【DFS/回溯】2022年1月1日-113. 路径总和 II
给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径. 叶子节点 是指没有子节点的节点. 来源:力扣(LeetCode)链接 ...
- Windows10下python3和python2同时安装(二)python2.exe、python3.exe和pip2、pip3设置
Windows10下python3和python2同时安装(二) python2.exe.python3.exe和pip2.pip3设置 说明:安装安装python3和python2请参考本系列教程( ...
- 个人电脑公网IPv6配置
一.前言 自己当时以低价买的阿里ECS云服务器马上要过期了,对于搭建个人博客.NAS这样服务器的需求购买ECS服务器成本太高了,刚好家里有台小型的桌面式笔记本,考虑用作服务器,但是公网IPv4的地址实 ...
- ExcelToObject.NPOI 两行代码导出Excel报表、读取Excel数据
简介 作为一个dotnet开发者,经常面对业务系统中大量报表导入导出,经常写了一堆的重复代码.最近发现一个操作excel的神器:ExcelToObject.NPOI,两行代码就能导出一个报表,两行代码 ...
- ES6——模块化
模块化 模块化是指将一个大的程序文件,拆分成许多小的文件,然后将小文件组合起来. 一.浏览器使用ES6模块化方式一 使用script标签,将type属性设置为module,然后在script中书写代码 ...
- python与数值计算环境安装
数值计算的编程的软件很多种,也见过一些编程绘图软件的对比. 利用Python进行数值计算,需要用到numpy(矩阵) ,scipy(公式符号), matplotlib(绘图)这些工具包. 1.Linu ...
- 学习.NET MAUI Blazor(五)、修改Window窗口标题
由于Blazor属于SPA(single-page application),所以页面标题需要使用PageTitle组件来实现.但是在MAUI Blazor中,Blazor所在的位置是WebView, ...
- Java学习笔记:2022年1月13日(其一)
Java学习笔记:2022年1月13日(其一) 摘要:这篇笔记主要讲解了Java中的自定义类.以及构造一个类时所需要了解的一些重点知识. 目录 Java学习笔记:2022年1月13日(其一) 1. ...
- Linux的串口非标准波特率设置更改
用的是全志的R528 SDK,Linux内核是5.4,新增加一个250000的非标准波特率 参考网络大神文档,实践并记录宝贵的经验. 方法: 1.修改内核的/include/uapi/asm-gene ...
- flutter Error:Cannot run with sound null safety, because the following dependencies don't support
学习flutter新版本的路上,真的是一天一个新惊喜啊 今天遇到的坑是 Flutter 升级高版本后,运行和build 报错 Error: Cannot run with sound null saf ...