Learning a Deep Convolutional Network for Image Super-Resolution

SRCNN是深度学习应用于SR领域的开山之作。

论文 2014 ECCV

Pytorch代码 与论文的细节设置有些不同。

实验细节总结:

1 数据集

set5:5张图片

set14:14张图片

用到的数据集为set5、set14、ImageNet。

  其中,为和之前其他的方法保持相同的条件,先用91张图片作为训练集,set5、set14作为测试集,其中set5的5张图片用作x2x3x4的测试集,set14的14张图片用作x3的测试集。得出的模型效果比之前其他的方法更好。随后用ImageNet的大数据量训练(网络的参数发生了一些改变),得出训练数据集的增加,会给结果带来更好效果,同时训练时间和推理时间也会增加。

在文章的4 Experiments中,描述如下,

Datasets. For a fair comparison with traditional example-based methods, we use the same training set, test sets, and protocols as in [20].
Specifically, the training set consists of 91 images.
The Set5 [2] (5 images) is used to evaluate the performance of upscaling factors 2, 3, and 4, and Set14 [28] (14 images) is used to evaluate the upscaling factor 3.
In addition to the 91-image training set, we also investigate a larger training set in Section 5.2.

具体来说,训练集包含91张图片。set5的五张图片用来估计模型在上采样x2,x3,x4时的表现,set14用来估计模型在上采样x3的表现。除了91张图片之外,在5.2节也用了大数据集训练。

值得注意的是,文章中提出了sub-images(即子图)的概念。

在训练阶段,地面真实图像{Xi}是从训练图像中随机裁剪出来的32张32×32像素的子图像。我们所说的“子图像”是指这些样本被视为小的“图像”而不是“补丁”,在这个意义上,“补丁”是重叠的,需要一些平均作为后处理,但“子图像”不需要。为了合成低分辨率样本{Yi},我们用适当的高斯核模糊子图像,用放大因子进行子采样,并通过双边插值对相同的因子进行放大。这91张训练图像提供了大约24,800张子图像。子图像从原始图像中提取,步幅为14。我们尝试了较小的进步,但没有观察到显著的性能改善。从我们的观察来看,训练集足以训练所提出的深度网络。

2 实验流程

输入为32x32像素的子图sub-image,经过三层卷积,得到输出。

提前对输入input进行了双三次插值,所以网络的输入和输出是相同大小的。

第一层卷积的参数为:(kernel size)9x9,(input channel)1,(outputchannel)64

第二层卷积的参数为:1x1,64,32

第三层卷积的参数为:5x5,32,1

至于为什么第一层网络中输入通道为1,文章中这样说是为了和之前的方法进行对比,所以采用相同的通道数。

在[20]之后,我们在实验中只考虑亮度通道(在YCrCb颜色空间中),所以在第一/最后一层考虑c=1。
这两个色度通道仅为显示的目的而进行双边上采样,而不是用于训练/测试。
请注意,我们的方法可以通过设置c=3来扩展到直接的彩色图像训练。
我们使用c=1主要是为了与以前的方法进行公平的比较,因为大多数方法只涉及亮度通道。

步长s=1;训练时为避免边缘效应,无padding;测试时为保持和input image相同的大小,padding填充0。

所以,训练时的网络输出为20x20像素的子图。因为损失函数为MSE损失函数,所以调整损失函数为仅通过Xi(input image)的中心20×20与网络输出之间的差异来评估。

为了解决边界效应,在每个卷积层中,每个像素的输出(在ReLU之前)被有效输入像素的数量归一化,这可以预先计算。(ReLu激活之前归一化输入像素)

卷积核(kernel or filter)初始化为从一个均值为0,标准差为0.001(偏差为0)的高斯分布中随机抽取来初始化。

前两层的学习率为 \(10^{-4}\) ,最后一层的学习率为 \(10^{-5}\).作者通过经验发现,在最后一层的一个较小的学习速率对网络的收敛是很重要的(类似于去噪的情况[12])。

优化方式为普通的梯度下降SGD

文章中没写epoch,batch-size。只写了训练 \(8 \times 10^8\) 个反向传播需要三天时间。

网络结构:

3 损失函数:MSE损失函数

其中,n为像素点的个数,F为网络的输出,X为网络的输入,i表示第i个图像。其中,训练集和测试集的计算方式有区别。

4 实验结果

表一 在set5数据集上的PSNR(dB)和测试时间(sec,秒)

表2 set14数据集上的PSNR(dB)和测试时间(sec)

5 实验配置

GTX 770 GPU

c++

IntelCPU3.10 GHz

16GB内存

读论文SRCNN:Learning a Deep Convolutional Network for Image Super-Resolution的更多相关文章

  1. 论文学习 :Learning a Deep Convolutional Network for Image Super-Resolution 2014

    (Learning a Deep Convolutional Network for Image Super-Resolution, ECCV2014) 摘要:我们提出了一种单图像超分辨率的深度学习方 ...

  2. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  3. ASPLOS'17论文导读——SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing

    今年去参加了ASPLOS 2017大会,这个会议总体来说我感觉偏系统和偏软一点,涉及硬件的相对少一些,对我这个喜欢算法以及硬件架构的菜鸟来说并不算非常契合.中间记录了几篇相对比较有趣的paper,今天 ...

  4. ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution

    ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...

  5. Deep Learning 27:Batch normalization理解——读论文“Batch normalization: Accelerating deep network training by reducing internal covariate shift ”——ICML 2015

    这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network tr ...

  6. 论文笔记(6):Weakly-and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation

    这篇文章的主要贡献点在于: 1.实验证明仅仅利用图像整体的弱标签很难训练出很好的分割模型: 2.可以利用bounding box来进行训练,并且得到了较好的结果,这样可以代替用pixel-level训 ...

  7. DCGAN: "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Network" Notes

    - Alec Radford, ICLR2016 原文:https://arxiv.org/abs/1511.06434 论文翻译:https://www.cnblogs.com/lyrichu/p/ ...

  8. Discriminative Learning of Deep Convolutional Feature Point Descriptors 论文阅读笔记

    介绍 该文提出一种基于深度学习的特征描述方法,并且对尺度变化.图像旋转.透射变换.非刚性变形.光照变化等具有很好的鲁棒性.该算法的整体思想并不复杂,使用孪生网络从图块中提取特征信息(得到一个128维的 ...

  9. 读论文Machine Learning for Improved Diagnosis and Prognosis in Healthcare

    Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=>Sn => ...

  10. Paper | Compression artifacts reduction by a deep convolutional network

    目录 1. 故事 2. 方法 3. 实验 这是继SRCNN(超分辨)之后,作者将CNN的战火又烧到了去压缩失真上.我们看看这篇文章有什么至今仍有启发的故事. 贡献: ARCNN. 讨论了low-lev ...

随机推荐

  1. day12 多线程1.进程与线程 & 2.线程生命周期 & 3.线程同步机制

    day12 bigDecimal,用于计算钱的数据类型 多线程 线程与进程 进程 1)执行中的应用程序 2)一个进程可以包含一个或者多个线程 3)一个进程至少要包含一个线程(如main方法) 线程 线 ...

  2. <一>智能指针基础

    代码1 int main(){ //裸指针,手动开辟,需要自己释放,如果忘记了或者因为 //程序逻辑导致p没有释放,那么就会导致内存泄漏 int *p=new int(10); if(***){ re ...

  3. 【大数据-课程】高途-天翼云侯圣文-Day1:互联网大数据揭秘(大数据介绍&MR实现双十一举牌)

    一.大厂职级 P7:年薪百万 二.大数据发展 1.职业路线和岗位角色 2.大数据行业发展 三.大数据的位置 1.热门行业 大数据承上启下 2.三者关系 啤酒和尿不湿:启发可以放在一块 3.大数据作用 ...

  4. SAP程序发布流程

    更改程序名称 如果你想要更改程序名称的话,首先进入程序,关闭编辑,只显示代码 点击重命名就可以了 或者直接输入事务代码se38进入APAP编辑器,输入程序名称,重命名 为程序创建事务代码 事务代码为s ...

  5. python算法初步(一)

    python算法初步(一) 冒泡排序 时间效率O(n²)原理:依次比较相邻两个位置的元素大小,然后按照要求交换位置. #从中选出一个数据(作为最小数据),然后和其他的数据依次比较,如果有更小的数据,那 ...

  6. Yearning建立流程和数据源进行测试

    1.前提说明 前面已经搭建好了平台,并且接入了LDAP.邮箱和钉钉,现在就是建立一下数据源和流程来进行测试,如果有什么疑问可以看上一篇文章安装Yearning审核平台 2.建立流程 2.1 新建流程 ...

  7. Python 为什么如此设计?

    大概两年半前,我萌生了要创作一个新的系列文章的想法,也就是"Python为什么",试图对 Python 的语法及特性提出"为什么"式的问题,以此加深对它的理解, ...

  8. 【Linux】TCS34725 颜色传感器设备驱动

    一.概述 此笔记主要是学习 Linux 中的 I2C 驱动,顺便验证一下 TCS34725 传感器的使用,主要内容还是程序记录,方便编写其他 I2C 设备驱动时做参考,所以关于 TCS34725 这里 ...

  9. python进阶之路6之 for循环方法

    while循环补充说明 1.死循环 真正的死循环是一旦执行 CPU功耗会极速上升 直到系统采取紧急措施 尽量不要让CPU长时间不间断运算 2.嵌套及全局标志位 强调:一个break只能结束它所在的那一 ...

  10. 《深度探索C++对象模型》第四章 Function语意学

    member function相对于nonmember function之间不存在效率之间的差别,因为编译器内部已经将"member 函数实体"转化为对等的"nonmem ...