基于C++的OpenGL 08 之基础光照
1. 引言
本文基于C++语言,描述OpenGL的基础光照
前置知识可参考:
笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:
2. 概述
冯氏光照模型(Phong Lighting Model):环境(Ambient)、漫反射(Diffuse)和镜面(Specular)光照
漫反射光照的强度由法向量与光的方向向量的余弦值决定,角度越小,光照越强
镜面光照的强度由视线向量与光的反射向量的余弦值决定,角度越小,光照越强
3. 环境光照
使用一个很小的常量因子乘以光的颜色,模拟环境光照
在片段着色器GLSL中:
...
void main()
{
float ambientStrength = 0.1;
vec3 ambient = ambientStrength * lightColor;
vec3 result = ambient * objectColor;
FragColor = vec4(result, 1.0);
}
结果如下图:
4. 漫反射光照
使用光线与法向量的余弦值作为漫反射因子,再乘以光的颜色来模拟漫反射光照
在这里,法向量由我们手动输入,光的方向由光的位置向量减去平面的位置向量获取
4.1 法向量
设置物体每个平面的法向量:
float vertices[] = {
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f
};
绑定属性:
// 立方体
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)(3*sizeof(float)));
glEnableVertexAttribArray(1);
// 光源立方体
...
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
在顶点着色器中将法向量变换为世界坐标并向片段着色器传递数据:
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
...
out vec3 Normal;
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
Normal = mat3(transpose(inverse(model))) * aNormal;
}
在片段着色器接收数据:
in vec3 Normal;
void main()
{
...
vec3 norm = normalize(Normal);
}
4.2 光的方向向量
在片段着色器中设置光源位置向量:
uniform vec3 lightPos;
传输数据:
lightingShader.setVec3("lightPos", lightPos);
将平面位置变换到世界坐标得到位置向量:
out vec3 FragPos;
out vec3 Normal;
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
FragPos = vec3(model * vec4(aPos, 1.0));
Normal = aNormal;
}
在片段着色器接收数据并计算光的方向向量:
...
in vec3 FragPos;
void main()
{
...
vec3 lightDir = normalize(lightPos - FragPos);
}
4.3 计算漫反射光照
计算方向向量与光的方向向量之间的余弦值作为漫反射因子(小于零的设为零),再乘以光照颜色得到漫反射光照
在片段着色器中:
float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = diff * lightColor;
将环境光照与漫反射光照结合:
vec3 result = (ambient + diffuse) * objectColor;
FragColor = vec4(result, 1.0);
结果如下图:
5. 镜面光照
计算视线向量与光的反射向量之间的余弦值作为镜面反射因子(小于零的设为零),再乘以光照颜色得到漫反射光照
在片段着色器中设置观察位置:
uniform vec3 viewPos;
向GPU传输数据:
lightingShader.setVec3("viewPos", cameraPos);
计算视线向量(观察方向)与反射向量:
vec3 viewDir = normalize(viewPos - FragPos);
vec3 reflectDir = reflect(-lightDir, norm);
定义镜面强度,即反射能力:
float specularStrength = 0.5;
计算镜面光照:
float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
vec3 specular = specularStrength * spec * lightColor;
将环境光照、漫反射光照、镜面光照结合:
vec3 result = (ambient + diffuse + specular) * objectColor;
FragColor = vec4(result, 1.0);
结果如下图:
6. 完整代码
主要文件Lighting.cpp
:
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <math.h>
#include "Shader.hpp"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <glm/glm.hpp>
#include <glm/ext/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale
#include <glm/ext/matrix_clip_space.hpp> // glm::perspective
#include <glm/gtc/type_ptr.hpp>
//全局变量
glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 10.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);
// 函数声明
void framebuffer_size_callback(GLFWwindow *window, int width, int height);
void process_input(GLFWwindow *window);
int main()
{
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
GLFWwindow *window = glfwCreateWindow(800, 600, "lighting", nullptr, nullptr);
if (window == nullptr)
{
std::cout << "Faild to create window" << std::endl;
glfwTerminate();
}
glfwMakeContextCurrent(window);
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Faild to initialize glad" << std::endl;
return -1;
}
glad_glViewport(0, 0, 800, 600);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
//配置项
glEnable(GL_DEPTH_TEST);
Shader lightCubeShader("../light_cube.vs.glsl", "../light_cube.fs.glsl");
Shader lightingShader("../cube.vs.glsl", "../cube.fs.glsl");
unsigned int cubeVAO;
glGenVertexArrays(1, &cubeVAO);
glBindVertexArray(cubeVAO);
float vertices[] = {
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f
};
unsigned int VBO;
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)(3*sizeof(float)));
glEnableVertexAttribArray(1);
unsigned int lightCubeVAO;
glGenVertexArrays(1, &lightCubeVAO);
glBindVertexArray(lightCubeVAO);
// 只需要绑定VBO不用再次设置VBO的数据,因为箱子的VBO数据中已经包含了正确的立方体顶点数据
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// 设置灯立方体的顶点属性(对我们的灯来说仅仅只有位置数据)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
while (!glfwWindowShouldClose(window))
{
process_input(window);
glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
lightingShader.use();
lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
lightingShader.setVec3("lightPos", lightPos);
lightingShader.setVec3("viewPos", cameraPos);
glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f));
glm::mat4 view = glm::mat4(1.0f);
// view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));
view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp);
glm::mat4 projection = glm::mat4(1.0f);
projection = glm::perspective(glm::radians(45.0f), 800.0f / 600.0f, 0.1f, 100.0f);
// 模型矩阵
int modelLoc = glGetUniformLocation(lightingShader.ID, "model");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
// 观察矩阵和投影矩阵与之类似
int viewLoc = glGetUniformLocation(lightingShader.ID, "view");
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
int projectionLoc = glGetUniformLocation(lightingShader.ID, "projection");
glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection));
// render the cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
// also draw the lamp object
lightCubeShader.use();
lightCubeShader.setMat4("projection", projection);
lightCubeShader.setMat4("view", view);
model = glm::mat4(1.0f);
model = glm::translate(model, lightPos);
model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
lightCubeShader.setMat4("model", model);
glBindVertexArray(lightCubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwTerminate();
return 0;
}
void framebuffer_size_callback(GLFWwindow *window, int width, int height)
{
glViewport(0, 0, width, height);
}
void process_input(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
{
glfwSetWindowShouldClose(window, true);
}
float cameraSpeed = 0.05f; // adjust accordingly
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
cameraPos += cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
cameraPos -= cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}
立方体顶点着色器GLSLcue.vs.glsl
:
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
out vec3 Normal;
out vec3 FragPos;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
FragPos = vec3(model * vec4(aPos, 1.0));
Normal = aNormal;
}
立方体片段着色器GLSLcube.fs.glsl
:
#version 330 core
in vec3 Normal;
in vec3 FragPos;
out vec4 FragColor;
uniform vec3 objectColor;
uniform vec3 lightColor;
uniform vec3 lightPos;
uniform vec3 viewPos;
void main()
{
float ambientStrength = 0.1;
vec3 ambient = ambientStrength * lightColor;
vec3 norm = normalize(Normal);
vec3 lightDir = normalize(lightPos - FragPos);
float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = diff * lightColor;
vec3 viewDir = normalize(viewPos - FragPos);
vec3 reflectDir = reflect(-lightDir, norm);
float specularStrength = 0.8;
float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
vec3 specular = specularStrength * spec * lightColor;
vec3 result = (ambient + diffuse + specular) * objectColor;
FragColor = vec4(result, 1.0);
}
着色器Shader.hpp
、光源顶点着色器GLSLlight_cube.vs.glsl
、光源片段着色器GLSLlight_cube.fs.glsl
见:
7. 参考资料
[1]基础光照 - LearnOpenGL CN (learnopengl-cn.github.io)
基于C++的OpenGL 08 之基础光照的更多相关文章
- OpenGL光照1:颜色和基础光照
本文是个人学习记录,学习建议看教程 https://learnopengl-cn.github.io/ 非常感谢原作者JoeyDeVries和多为中文翻译者提供的优质教程 的内容为插入注释,可以先跳过 ...
- OpenGL学习笔记(6) 基础光照的计算方法
这个笔记只是冯氏光照模型下漫反射光以及镜面光照的计算方式的笔记 基础光照 基础光照分为环境光,漫反射光,镜面光照 环境光 环境光是一个常量,表示在没有光源的情况下物体的光 漫反射光 漫反射光分量的计算 ...
- 基于Cocos2d-x学习OpenGL ES 2.0系列——纹理贴图(6)
在上一篇文章中,我们介绍了如何绘制一个立方体,里面涉及的知识点有VBO(Vertex Buffer Object).IBO(Index Buffer Object)和MVP(Modile-View-P ...
- 基于Cocos2d-x学习OpenGL ES 2.0系列——使用VBO索引(4)
在上一篇文章中,我们介绍了uniform和模型-视图-投影变换,相信大家对于OpenGL ES 2.0应该有一点感觉了.在这篇文章中,我们不再画三角形了,改为画四边形.下篇教程,我们就可以画立方体了, ...
- python进阶08 MySQL基础补充
python进阶08 MySQL基础补充 本次课程都是基于三张表格的使用 一.子查询 #如何找到‘张三’的成绩 #思路:先找到张三的学号,在拿这个张三的学号到成绩表里面去匹配,得出成绩 #如何用一条查 ...
- 面向服务体系架构(SOA)和数据仓库(DW)的思考基于 IBM 产品体系搭建基于 SOA 和 DW 的企业基础架构平台
面向服务体系架构(SOA)和数据仓库(DW)的思考 基于 IBM 产品体系搭建基于 SOA 和 DW 的企业基础架构平台 当前业界对面向服务体系架构(SOA)和数据仓库(Data Warehouse, ...
- 如何基于Winform开发框架或混合框架基础上进行项目的快速开发
在开发项目的时候,我们为了提高速度和质量,往往不是白手起家,需要基于一定的基础上进行项目的快速开发,这样可以利用整个框架的生态基础模块,以及成熟统一的开发方式,可以极大提高我们开发的效率.本篇随笔就是 ...
- 基于Cocos2d-x学习OpenGL ES 2.0之多纹理
没想到原文出了那么多错别字,实在对不起观众了.介绍opengl es 2.0的不多.相信介绍基于Cocos2d-x学习OpenGL ES 2.0之多纹理的,我是独此一家吧.~~ 子龙山人出了一个系列: ...
- Opengl场景中加光照包含几个步骤
http://zuoye.baidu.com/question/44e2a82d7ad5c0e1d33ddb9a40e0bf86.html Opengl场景中加光照包含几个步骤,各个步骤实现用的函数 ...
- 基于RxJava2+Retrofit2精心打造的Android基础框架
代码地址如下:http://www.demodashi.com/demo/12132.html XSnow 基于RxJava2+Retrofit2精心打造的Android基础框架,包含网络.上传.下载 ...
随机推荐
- 【算法总结】【队列均LinkedList】栈和队列、双端队列的使用及案例
1.栈 初始化:Stack<E> stack = new Stack<>(); 出栈:stack.pop() 或 stack.remove(stack.size() - 1) ...
- Java多线程详解(通俗易懂)
一.线程简介 1. 什么是进程? 电脑中会有很多单独运行的程序,每个程序有一个独立的进程,而进程之间是相互独立存在的.例如图中的微信.酷狗音乐.电脑管家等等. 2. 什么是线程? 进程想要执行任务就需 ...
- for循环结构、range方法
目录 今日内容总结 whlie补充说明 for循环结构 range方法 练习 今日内容总结 whlie补充说明 1.死循环 真正死循环是一旦执行 CPU功耗会急速上升 直到系统采取紧急措施 尽量不要让 ...
- JavaScript:变量的作用域,window对象,关键字var/let与function
为什么要将这些内容放在一起,因为他们都跟初始化有关系,我们慢慢说吧. 我们在代码中,都会声明变量.函数和对象,然后由浏览器解释器(下面简称浏览器)执行: 我们还说过,变量和对象的内存结构: 那么,是什 ...
- vivo 服务端监控体系建设实践
作者:vivo 互联网服务器团队- Chen Ningning 本文根据"2022 vivo开发者大会"现场演讲内容整理而成. 经过几年的平台建设,vivo监控平台产品矩阵日趋完善 ...
- [Unity]限制两个物体之间的距离
//限制两个物体之间的距离 if (Vector3.Distance(B.position, A.position) > maxDistance) { //获得两个物体之间的单位向量 Vecto ...
- 【Vue3.0】关于 script setup 语法糖的用法
script setup - 简介 先来看一看官网关于 <script setup> 的介绍: 要彻底的了解 setup 语法糖,你必须先明确 setup() 这个 组合式API 官网中对 ...
- NG-ZORRO + Angular11使用Echarts实现柱折线图-折柱混合,并给图表添加点击打印图表数据!!!详细代码
先上效果图 HTML代码 <div echarts #myEchart [options]="option"></div> ts代码 import { Co ...
- VUE引入自定义文字方式
单vue文件引入老是报错,所以我用了全局引入 1.先在assets里新建font文件夹,把字体放进去,然后在字体旁边新建font.less, font.less内容如下: @font-face{ fo ...
- Tomcat 解决一些基本配置问题。
解决Tomcat进入manger管理界面需要账号密码问题 第一步,打开Tomcat的conf文件夹 进入tomcat-users.xml文件 在 标签里面复制以下内容 <role rolenam ...