1. 引言

本文基于C++语言,描述OpenGL的基础光照

前置知识可参考:

笔者这里不过多描述每个名词、函数和细节,更详细的文档可以参考:

2. 概述

冯氏光照模型(Phong Lighting Model):环境(Ambient)、漫反射(Diffuse)和镜面(Specular)光照

漫反射光照的强度由法向量与光的方向向量的余弦值决定,角度越小,光照越强

镜面光照的强度由视线向量与光的反射向量的余弦值决定,角度越小,光照越强

3. 环境光照

使用一个很小的常量因子乘以光的颜色,模拟环境光照

在片段着色器GLSL中:

...
void main()
{
float ambientStrength = 0.1;
vec3 ambient = ambientStrength * lightColor; vec3 result = ambient * objectColor;
FragColor = vec4(result, 1.0);
}

结果如下图:

4. 漫反射光照

使用光线与法向量的余弦值作为漫反射因子,再乘以光的颜色来模拟漫反射光照

在这里,法向量由我们手动输入,光的方向由光的位置向量减去平面的位置向量获取

4.1 法向量

设置物体每个平面的法向量:

float vertices[] = {
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f
};

绑定属性:

//  立方体
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)(3*sizeof(float)));
glEnableVertexAttribArray(1);
// 光源立方体
...
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);

在顶点着色器中将法向量变换为世界坐标并向片段着色器传递数据:

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
...
out vec3 Normal; void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
Normal = mat3(transpose(inverse(model))) * aNormal;
}

在片段着色器接收数据:

in vec3 Normal;
void main()
{
...
vec3 norm = normalize(Normal);
}

4.2 光的方向向量

在片段着色器中设置光源位置向量:

uniform vec3 lightPos;

传输数据:

lightingShader.setVec3("lightPos", lightPos);

将平面位置变换到世界坐标得到位置向量:

out vec3 FragPos;
out vec3 Normal; void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
FragPos = vec3(model * vec4(aPos, 1.0));
Normal = aNormal;
}

在片段着色器接收数据并计算光的方向向量:

...
in vec3 FragPos;
void main()
{
...
vec3 lightDir = normalize(lightPos - FragPos);
}

4.3 计算漫反射光照

计算方向向量与光的方向向量之间的余弦值作为漫反射因子(小于零的设为零),再乘以光照颜色得到漫反射光照

在片段着色器中:

float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = diff * lightColor;

将环境光照与漫反射光照结合:

vec3 result = (ambient + diffuse) * objectColor;
FragColor = vec4(result, 1.0);

结果如下图:

5. 镜面光照

计算视线向量与光的反射向量之间的余弦值作为镜面反射因子(小于零的设为零),再乘以光照颜色得到漫反射光照

在片段着色器中设置观察位置:

uniform vec3 viewPos;

向GPU传输数据:

lightingShader.setVec3("viewPos", cameraPos);

计算视线向量(观察方向)与反射向量:

vec3 viewDir = normalize(viewPos - FragPos);
vec3 reflectDir = reflect(-lightDir, norm);

定义镜面强度,即反射能力:

float specularStrength = 0.5;

计算镜面光照:

float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
vec3 specular = specularStrength * spec * lightColor;

将环境光照、漫反射光照、镜面光照结合:

vec3 result = (ambient + diffuse + specular) * objectColor;
FragColor = vec4(result, 1.0);

结果如下图:

6. 完整代码

主要文件Lighting.cpp

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <iostream>
#include <math.h>
#include "Shader.hpp"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <glm/glm.hpp>
#include <glm/ext/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale
#include <glm/ext/matrix_clip_space.hpp> // glm::perspective
#include <glm/gtc/type_ptr.hpp> //全局变量
glm::vec3 cameraPos = glm::vec3(0.0f, 0.0f, 10.0f);
glm::vec3 cameraFront = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 cameraUp = glm::vec3(0.0f, 1.0f, 0.0f);
glm::vec3 lightPos(1.2f, 1.0f, 2.0f); // 函数声明
void framebuffer_size_callback(GLFWwindow *window, int width, int height);
void process_input(GLFWwindow *window); int main()
{
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
GLFWwindow *window = glfwCreateWindow(800, 600, "lighting", nullptr, nullptr); if (window == nullptr)
{
std::cout << "Faild to create window" << std::endl;
glfwTerminate();
}
glfwMakeContextCurrent(window); if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Faild to initialize glad" << std::endl;
return -1;
}
glad_glViewport(0, 0, 800, 600);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); //配置项
glEnable(GL_DEPTH_TEST); Shader lightCubeShader("../light_cube.vs.glsl", "../light_cube.fs.glsl");
Shader lightingShader("../cube.vs.glsl", "../cube.fs.glsl"); unsigned int cubeVAO;
glGenVertexArrays(1, &cubeVAO);
glBindVertexArray(cubeVAO); float vertices[] = {
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f,
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, -0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f,
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, -0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f,
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f,
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f,
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, -0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f,
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, -0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f,
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f
};
unsigned int VBO;
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)0);
glEnableVertexAttribArray(0);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void *)(3*sizeof(float)));
glEnableVertexAttribArray(1); unsigned int lightCubeVAO;
glGenVertexArrays(1, &lightCubeVAO);
glBindVertexArray(lightCubeVAO);
// 只需要绑定VBO不用再次设置VBO的数据,因为箱子的VBO数据中已经包含了正确的立方体顶点数据
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// 设置灯立方体的顶点属性(对我们的灯来说仅仅只有位置数据)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0); while (!glfwWindowShouldClose(window))
{
process_input(window); glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); lightingShader.use();
lightingShader.setVec3("objectColor", 1.0f, 0.5f, 0.31f);
lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f);
lightingShader.setVec3("lightPos", lightPos);
lightingShader.setVec3("viewPos", cameraPos);
glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians(-55.0f), glm::vec3(1.0f, 0.0f, 0.0f)); glm::mat4 view = glm::mat4(1.0f);
// view = glm::translate(view, glm::vec3(0.0f, 0.0f, -3.0f));
view = glm::lookAt(cameraPos, cameraPos + cameraFront, cameraUp); glm::mat4 projection = glm::mat4(1.0f);
projection = glm::perspective(glm::radians(45.0f), 800.0f / 600.0f, 0.1f, 100.0f); // 模型矩阵
int modelLoc = glGetUniformLocation(lightingShader.ID, "model");
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
// 观察矩阵和投影矩阵与之类似
int viewLoc = glGetUniformLocation(lightingShader.ID, "view");
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
int projectionLoc = glGetUniformLocation(lightingShader.ID, "projection");
glUniformMatrix4fv(projectionLoc, 1, GL_FALSE, glm::value_ptr(projection)); // render the cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36); // also draw the lamp object
lightCubeShader.use();
lightCubeShader.setMat4("projection", projection);
lightCubeShader.setMat4("view", view);
model = glm::mat4(1.0f);
model = glm::translate(model, lightPos);
model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
lightCubeShader.setMat4("model", model); glBindVertexArray(lightCubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36); glfwSwapBuffers(window);
glfwPollEvents();
} glfwTerminate();
return 0;
} void framebuffer_size_callback(GLFWwindow *window, int width, int height)
{
glViewport(0, 0, width, height);
} void process_input(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
{
glfwSetWindowShouldClose(window, true);
}
float cameraSpeed = 0.05f; // adjust accordingly
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
cameraPos += cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
cameraPos -= cameraSpeed * cameraFront;
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
cameraPos -= glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
cameraPos += glm::normalize(glm::cross(cameraFront, cameraUp)) * cameraSpeed;
}

立方体顶点着色器GLSLcue.vs.glsl

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal; out vec3 Normal;
out vec3 FragPos; uniform mat4 model;
uniform mat4 view;
uniform mat4 projection; void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
FragPos = vec3(model * vec4(aPos, 1.0));
Normal = aNormal;
}

立方体片段着色器GLSLcube.fs.glsl

#version 330 core
in vec3 Normal;
in vec3 FragPos; out vec4 FragColor; uniform vec3 objectColor;
uniform vec3 lightColor;
uniform vec3 lightPos;
uniform vec3 viewPos; void main()
{
float ambientStrength = 0.1;
vec3 ambient = ambientStrength * lightColor; vec3 norm = normalize(Normal);
vec3 lightDir = normalize(lightPos - FragPos);
float diff = max(dot(norm, lightDir), 0.0);
vec3 diffuse = diff * lightColor; vec3 viewDir = normalize(viewPos - FragPos);
vec3 reflectDir = reflect(-lightDir, norm);
float specularStrength = 0.8;
float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32);
vec3 specular = specularStrength * spec * lightColor; vec3 result = (ambient + diffuse + specular) * objectColor;
FragColor = vec4(result, 1.0);
}

着色器Shader.hpp、光源顶点着色器GLSLlight_cube.vs.glsl、光源片段着色器GLSLlight_cube.fs.glsl见:

7. 参考资料

[1]基础光照 - LearnOpenGL CN (learnopengl-cn.github.io)

基于C++的OpenGL 08 之基础光照的更多相关文章

  1. OpenGL光照1:颜色和基础光照

    本文是个人学习记录,学习建议看教程 https://learnopengl-cn.github.io/ 非常感谢原作者JoeyDeVries和多为中文翻译者提供的优质教程 的内容为插入注释,可以先跳过 ...

  2. OpenGL学习笔记(6) 基础光照的计算方法

    这个笔记只是冯氏光照模型下漫反射光以及镜面光照的计算方式的笔记 基础光照 基础光照分为环境光,漫反射光,镜面光照 环境光 环境光是一个常量,表示在没有光源的情况下物体的光 漫反射光 漫反射光分量的计算 ...

  3. 基于Cocos2d-x学习OpenGL ES 2.0系列——纹理贴图(6)

    在上一篇文章中,我们介绍了如何绘制一个立方体,里面涉及的知识点有VBO(Vertex Buffer Object).IBO(Index Buffer Object)和MVP(Modile-View-P ...

  4. 基于Cocos2d-x学习OpenGL ES 2.0系列——使用VBO索引(4)

    在上一篇文章中,我们介绍了uniform和模型-视图-投影变换,相信大家对于OpenGL ES 2.0应该有一点感觉了.在这篇文章中,我们不再画三角形了,改为画四边形.下篇教程,我们就可以画立方体了, ...

  5. python进阶08 MySQL基础补充

    python进阶08 MySQL基础补充 本次课程都是基于三张表格的使用 一.子查询 #如何找到‘张三’的成绩 #思路:先找到张三的学号,在拿这个张三的学号到成绩表里面去匹配,得出成绩 #如何用一条查 ...

  6. 面向服务体系架构(SOA)和数据仓库(DW)的思考基于 IBM 产品体系搭建基于 SOA 和 DW 的企业基础架构平台

    面向服务体系架构(SOA)和数据仓库(DW)的思考 基于 IBM 产品体系搭建基于 SOA 和 DW 的企业基础架构平台 当前业界对面向服务体系架构(SOA)和数据仓库(Data Warehouse, ...

  7. 如何基于Winform开发框架或混合框架基础上进行项目的快速开发

    在开发项目的时候,我们为了提高速度和质量,往往不是白手起家,需要基于一定的基础上进行项目的快速开发,这样可以利用整个框架的生态基础模块,以及成熟统一的开发方式,可以极大提高我们开发的效率.本篇随笔就是 ...

  8. 基于Cocos2d-x学习OpenGL ES 2.0之多纹理

    没想到原文出了那么多错别字,实在对不起观众了.介绍opengl es 2.0的不多.相信介绍基于Cocos2d-x学习OpenGL ES 2.0之多纹理的,我是独此一家吧.~~ 子龙山人出了一个系列: ...

  9. Opengl场景中加光照包含几个步骤

    http://zuoye.baidu.com/question/44e2a82d7ad5c0e1d33ddb9a40e0bf86.html  Opengl场景中加光照包含几个步骤,各个步骤实现用的函数 ...

  10. 基于RxJava2+Retrofit2精心打造的Android基础框架

    代码地址如下:http://www.demodashi.com/demo/12132.html XSnow 基于RxJava2+Retrofit2精心打造的Android基础框架,包含网络.上传.下载 ...

随机推荐

  1. python爬取网易云音乐评论及相关信息

    python爬取网易云音乐评论及相关信息 urllib requests 正则表达式 爬取网易云音乐评论及相关信息 urllib了解 参考链接: https://www.liaoxuefeng.com ...

  2. 彻底理解Python中的闭包和装饰器(下)

    上篇讲了Python中的闭包,本篇要讲的装饰器就是闭包的一个重要应用. 如果你还不知道什么是闭包,猛戳这里阅读:彻底理解Python中的闭包和装饰器(上) 什么是装饰器 装饰器的作用是在不修改函数定义 ...

  3. Kubernetes(k8s)存储管理之数据卷volumes(二):hostPath数据卷

    目录 一.系统环境 二.前言 三.hostPath数据卷 3.1 hostPath数据卷概览 3.2 创建有hostPath卷的pod 一.系统环境 服务器版本 docker软件版本 Kubernet ...

  4. CGI、WSGI、uWSGI、ASGI……

    在学习 Python Web 开发时候,可能会遇到诸如 uwsgi.wsgi 等名词,下面通过梳理总结,探究它们之间的关系. CGI CGI(Common Gateway Interface)通用网关 ...

  5. 使用WPF或AspNetCore创建简易版ChatGPT客户端,让ChatGPT成为你的私人助理

    前言:前一天写的一个ChatGPT服务端,貌似大家用起来还不是那么方便,所以我顺便用WPF和AspNetCore的webapi程序做个客户端吧,通过客户端来快速访问chatgpt模型生成对话.   1 ...

  6. APP异常测试点汇总

    在测试APP时异常测试是非常必要的. 安装卸载中的异常测试 一.安装 安装过程中设备重启 安装过程中息屏 安装过程中断网 安装过程中切换网络 安装过程中收到短信提醒 安装过程中收到来电提醒 安装过程中 ...

  7. virtualenv 配置(windows)

    1.在线安装 virtualenv pip install virtualenv 2.离线安装 下载virtualenv包,解压并进入setup.py所在文件夹中 python setup.py in ...

  8. [深度学习] ImageAI库使用笔记

    ImageAI是一个Python库,旨在使开发人员,研究人员和学生能够使用简单的几行代码来构建具有独立的深度学习和计算机视觉功能的应用程序和系统. ImageAI的官方GitHub存储库为https: ...

  9. Maven初学习

    Maven初学习 摘要:本篇笔记记录了我在初学Maven是认为比较重要的一些知识点. 目录 Maven初学习 1.Maven简介 1.1.项目构建 Ant Maven Gradle 1.2.总结 2. ...

  10. BBS项目功能编写逻辑思路汇总

    BBS项目功能编写逻辑思路汇总 一.BBS创数据表 二.BBS注册功能 三.BBS登录功能 四.BBS首页搭建 五.BBS修改密码 六.BBS个人站点 七.BBS文章详情 八.BBS导入模块 九.BB ...