本文可以学习到以下内容:

  1. matplotlib 中文乱码解决办法
  2. seaborn 中文乱码解决办法
  3. seaborn 库csv数据下载地址
  4. 用matplotlib、seaborn、pyecharts绘制散点图

散点图

小凡在做数据分析的时候,经常需要对数据进行可视化操作,这样可以更加直观的了解数据,从而更好的分析数据。python常用来做数据可视化的第三方库有:matplotlib、seaborn、pyecharts。这几个第三方库都有各自的适用场景。

小凡在学习python的时候,最先接触的是matplotlib,工作中又接触到了pyecharts、seaborn。本篇以散点图为例,重点在于如何方便的使用这些库。

matplotlib绘制散点图

matplotlib是python数据可视化最著名的绘图库,他可以很轻松的绘制出各种各样的图表。

导入seaborn、pandas、numpy、matplotlib等库

import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pylab import mpl

在绘制图表的时候 matplotlib 对中文会显示成方框,可以用下面办法解决:

# 黑体
plt.rcParams["font.family"] = "SimHei"
# plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决无法显示符号的问题
plt.rcParams['axes.unicode_minus'] = False # seaborn默认主题
# sns.set()
# 解决Seaborn中文显示问题
sns.set(font='SimHei',font_scale=0.8)

官网散点图案例,绘制出雅虎股票相邻两天的调整后的收盘价(adj_close)涨跌幅度散点图

官网散点图案例

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close,
# volume, adj_close from the mpl-data/example directory. The record array
# stores the date as an np.datetime64 with a day unit ('D') in the date column.
# 加载数据
price_data = (cbook.get_sample_data('goog.npz', np_load=True)['price_data']
.view(np.recarray))
# 获取最近250天的交易数据
price_data = price_data[-250:] # get the most recent 250 trading days
# 计算涨跌幅度
delta1 = np.diff(price_data.adj_close) / price_data.adj_close[:-1] # Marker size in units of points^2
# 设置散点图每个点的颜色和大小
volume = (15 * price_data.volume[:-2] / price_data.volume[0])**2
close = 0.003 * price_data.close[:-2] / 0.003 * price_data.open[:-2]
# 设置图表和坐标轴
fig, ax = plt.subplots()
# 设置x轴、y轴数据,散点的大小、颜色、透明度属性
ax.scatter(delta1[:-1], delta1[1:], c=close, s=volume, alpha=0.5)
# 设置x轴标题
ax.set_xlabel(r'$\Delta_i$', fontsize=15)
# 设置y轴标题
ax.set_ylabel(r'$\Delta_{i+1}$', fontsize=15)
# 设置标题
ax.set_title('Volume and percent change')
# 显示网格线
ax.grid(True)
fig.tight_layout()
# 显示图表
plt.show()

散点图绘制结果如下:

seaborn绘制散点图

seaborn是基于matplotlib封装的高级API库,为绘制各种复杂的图表提供了便利。

seaborn的官网数据下载缓慢,我已下载完成,放在【数据加工厂】文件夹下,命名为 seaborn_data

官网案例地址

# 加载案例数据
data_path = "../数据加工厂/seaborn_data/tips.csv"
tips = pd.read_csv(data_path) # 修改为中文名
tips.columns = ["总账单","小费","性别","是否吸烟","星期几","时间","大小"]

用 head 方法进行数据预览

tips.head()

绘制出:不同时间段(午餐、晚餐)吸烟的人和不吸烟的人花费的账单和给的小费的关系散点图

# 绘制散点图
sns.relplot(
data=tips,
x="总账单",
y="小费",
col="时间",
hue="是否吸烟",
style="是否吸烟",
# size="size"
)

散点图绘制结果如下:

pyecharts绘制散点图

pyecharts将python和echarts结合起来,具有良好的交互性和观赏性,很适合用于制作数据报表。

官方案例地址

from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.faker import Faker df = pd.DataFrame(data={"名称":Faker.choose(),"商家A":Faker.values(),"商家B":Faker.values()})

用 head 方法进行数据预览

df.head()

c = (
Scatter()
.add_xaxis(df["名称"].values.tolist())
.add_yaxis("商家A", df["商家A"].values.tolist())
.add_yaxis("商家B", df["商家B"].values.tolist())
.set_global_opts(
title_opts=opts.TitleOpts(title="Scatter-VisualMap(Size)"),
visualmap_opts=opts.VisualMapOpts(type_="size", max_=150, min_=20),
)
)
c.render_notebook()

散点图绘制结果如下:

源码地址

链接:https://pan.baidu.com/s/17nJOEDbLDXTNUJSx3TiQtw?pwd=9izg
提取码:9izg

第八章用matplotlib、seaborn、pyecharts绘制散点图的更多相关文章

  1. matplotlib画图工具/绘制散点图

    绘制散点图 import matplotlib.pyplot as plt fig=plt.figure() ax = fig.add_subplot(111) ax.scatter(x,y, s,c ...

  2. 使用matplotlib绘制散点图

    在matplotlib中使用函数 matplotlib.pyplot.scatter 绘制散点图,matplotlib.pyplot.scatter的函数签名如下: matplotlib.pyplot ...

  3. 用seaborn绘制散点图

    散点图可以显示观察数据的分布,描述数据的相关性,matlibplot也可以绘制散点图,不过我一般优先使用seaborn库的sctterplot()绘制,下面就介绍一下如何用seaborn.scatte ...

  4. matplotlib 知识点13:绘制散点图(scatter函数精讲)

    散点图是指在回归分析中,数据点在直角坐标系平面上的分布图,散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合. 用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间 ...

  5. 2. matplotlib绘制散点图

    与绘制直线图的唯一区别:plt.scatter # coding=utf-8 from matplotlib import pyplot as plt from matplotlib import f ...

  6. matplotlib库绘制散点图

    假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温随时间(天)变化的某种规律? a = [11,17,16,11,12,11,12,6,6 ...

  7. Python:matplotlib绘制散点图

    与线型图类似的是,散点图也是一个个点集构成的.但不同之处在于,散点图的各点之间不会按照前后关系以线条连接起来. 用plt.plot画散点图     奇怪,代码和前面的例子差不多,为什么这里显示的却是散 ...

  8. matplotlib各图形绘制

    2D图形 import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.py ...

  9. 【Python】使用scatter()绘制散点图

    绘制简单散点图 要绘制单个点,使用scatter()函数,并向它传递一对x和y坐标,它将在指定位置绘制一个点 import matplotlib.pyplot as plt plt.scatter(2 ...

  10. # 使用scatter()绘制散点图

    使用scatter()绘制散点图 之前写过一篇,使用magic function快速绘图的教程了:https://www.cnblogs.com/jiading/p/11750001.html.但这种 ...

随机推荐

  1. Kubernetes环境cert-manager部署与应用

    本作品由Galen Suen采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可.由原作者转载自个人站点. 概述 本文用于整理基于Kubernetes环境的cert-manager部 ...

  2. wsl2 使用串口/usb

    wsl2串口 搜了几个方案,都不合适 网上很多人说wsl可以直接使用win的串口,com* 就对应 /dev/ttyS* 实际上这是wsl1的,wsl2官方明确表示不支持了 CH340 介绍 CH34 ...

  3. 对List集合进行分页

    1 简要说明 有时候,我们有一个list集合,需要对它进行分页处理 下面的根据类MyPageUtilVo就可以做到 它自带泛型,适合各种集合 可以设置每页的大小(默认为10) 根据页码(从1开始)就可 ...

  4. python爬虫学习——元组,字典(2.14日博客补)

    元组 ''' tup1 = () #创建一个空的元组 print(type(tup1)) #tup2 = (50) #不是元组,python把括号当成了表达式的一部分,即数学运算的括号 #tup2 = ...

  5. 六:spring Cloud

    六Spring Cloud 回顾之前的: javaSE 数据库 前端 Servlet HTTP Mybatis Spring SpringMVC SpringBoot Dubbo.Zookeeper. ...

  6. corundum:100GNIC学习(三)——恢复工程

    前文:(一)https://www.cnblogs.com/shroud404/p/15364812.html (二)https://www.cnblogs.com/shroud404/p/15412 ...

  7. 微信小程序JS

    微信小程序之操作三元运算符class <view class="chejian wx:if='{{item.is_check == 1 ? 'hover' : ''}}' " ...

  8. .Net 6.0:WebAPI配置跨域

    NuGet程序包管理,搜cors,并下载 紧接着在Program中添加代码 builder.Services.AddCors(options =>{ options.AddPolicy(name ...

  9. JAVA-GUI创作学校管理系统

    1.对于学校的管理系统,我们先做一个简单的一个需求分析,我们需要做学生信息管理,教师信息管理,课程的信息管理.我们要根据自己的需求进行数据库的编写. 简单的添加了几个 2.然后我们通过eclipse+ ...

  10. gitlab中CI/CD过程中的坑

    先上观点,azure的pipeline比gitlab ce版好用,gitlab收费版没有用过. 在.gitlab-ci.yml中的特殊字符处理: 解决方法: cmd="[$var1] &am ...