Codeforces Global Round 17

A. Anti Light's Cell Guessing

坑点:\(n=1,m=1\) 时答案为 \(0\) 。

其他情况:当 \(n=1\) 或 \(m=1\) 时,只需要取端点即可。其他情况只需要两个点,也是取两个端点,把离一个点曼哈顿距离为固定值的点连成一条线段,可以发现这两个端点形成的线段只可能有一个交点,即隐藏点。

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std;
using ll = long long; constexpr int N = 2e5+5, P = 1e9+7; int main() {
cin.tie(nullptr)->ios::sync_with_stdio(false);
int _; cin>>_;
while (_--) {
ll n,m; cin>>n>>m;
if(n==1&&m==1)cout<<0<<endl;
else if(n==1||m==1)cout<<1<<endl;
else {
cout<<2<<endl;
}
}
return 0;
}

B. Kalindrome Array

和之前cf出过的一题一模一样,那题是删字母,这题是删数字,不过都一样,因为可能删的值只可能有两个,枚举这两个可能值即可。

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std;
using ll = long long; constexpr int N = 2e5+5, P = 1e9+7;
int a[N]; int main() {
cin.tie(nullptr)->ios::sync_with_stdio(false);
int _; cin>>_;
while (_--) {
int n; cin>>n;
rep(i,0,n)cin>>a[i];
int lx=-1,ly=-1;
int l=0,r=n-1;
while(l<r){
if(a[l]!=a[r]){
if(lx==-1){
lx=a[l]; ly=a[r];
break;
}
}else{
l++,r--;
}
}
l=0,r=n-1;
int flag=1;
while(l<r){
if(a[l]!=a[r]){
if(a[l]==lx){
while(l<r&&a[l]==lx)l++;
}else if(a[r]==lx){
while(l<r&&a[r]==lx)r--;
}else{
flag=0;
break;
}
if(a[l]!=a[r]){
flag=0;
break;
}
}else{
l++,r--;
}
}
if(flag){
cout<<"yes\n";
continue;
}
l=0,r=n-1;flag=1;
while(l<r){
if(a[l]!=a[r]){
if(a[l]==ly){
while(l<r&&a[l]==ly)l++;
}else if(a[r]==ly){
while(l<r&&a[r]==ly)r--;
}else{
flag=0;
break;
}
if(a[l]!=a[r]){
flag=0;
break;
}
}else{
l++,r--;
}
}
if(!flag){
cout<<"no\n";
}else{
cout<<"yes\n";
}
}
return 0;
}

C. Keshi Is Throwing a Party

由于答案具有单调性,考虑二分答案。于是问题就转化成了从 \(n\) 个人里选 \(k\) 个人,使他们都开心。

假设选了 \(k\) 个人的下标分别为 \(p_1,p_2,\cdots,p_k\) 。对于 \(i\in[1,k]\) ,都有

\[b_{p_i}\ge i-1\\
a_{p_i}\ge k-i
\]

根据这个性质,我们就可以贪心地取了。

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std;
using ll = long long; constexpr int N = 2e5+5, P = 1e9+7;
int r[N], p[N], n; int check(int x) {
int ans=0,cc=0;
rep(i,0,n){
if(cc+1>=x-r[i]&&cc+1<=p[i]+1)cc++;
}
return cc>=x;
} int main() {
cin.tie(nullptr)->ios::sync_with_stdio(false);
int _; cin>>_;
while (_--) {
cin>>n;
rep(i,0,n)cin>>r[i]>>p[i];
int l=1,r=n;
while(l<r){
int mid=l+r+1>>1;
if(check(mid))l=mid;
else r=mid-1;
}
cout<<l<<endl;
}
return 0;
}

D. Not Quite Lee

一个数 \(x\) 形成的连续数字的和可以表示为

\[\frac{x(x+1)}{2}+kx(k\in \text{Z})
\]

于是一个数列 \((x_1,x_2,\cdots,x_k)\) 的合法性可以表示为

\[\sum_{i=1}^k(\frac{x_i(x_i+1)}{2}+k_ix_i)=0 \ (k_i\in \text{Z})
\]

移项得

\[\sum_{i=1}^k\frac{x_i(x_i+1)}{2}=\sum_{i=1}^kk_ix_i \ (k_i\in \text{Z})
\]

为表示简略,以下的幂次都是指 \(2\) 的幂次。

当数列中有一个为奇数时,右边的最低幂次为 \(0\) ,最低幂次为 \(0\) 的数可以表示任何数,也就是说,当数列中有一个为奇数,该数列即合法。于是考虑数列中全为偶数的情况,等式右边的最低幂次一定比左边的最低幂次大 \(1\) 。因为 \(x\) 是偶数,\(x+1\) 是奇数,乘起来再除个 \(2\) 必定会丢失一个因子 \(2\) 。低幂次的可以表示高幂次的,高幂次的不能表示低幂次,而左边的最低幂次要比右边小,所以要保证数列中幂次为最低幂次的数有偶数个,才能使他们的最低幂次 \(+1\) ,从而被右边的表示出来。于是思路就显而易见了,枚举最低幂次,若这个幂次不为 \(0\) ,那只能挑偶数个,否则都可以选。

从 \(n\) 个数中挑偶数个数(不能不挑)的方案数为

\[\binom{2}{n}+\binom{4}{n}+\cdots+\binom{\lfloor\frac{n}{2}\rfloor \times2}{n}
\]

其实根据二项式定理,二项式系数中的偶数项和奇数项的和其实是一样的,也就是说,上述的式子其实就是

\[2^{n-1}-\binom{0}{n}=2^{n-1}-1
\]

然后就可以写了。一个小技巧,求一个数的幂次可以用内建函数 __builtin_ctz(x) 求得。

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
using namespace std;
using ll = long long; constexpr int N = 2e5+5, P = 1e9+7; ll qpow(ll a, ll b) {
ll res=1;
for(;b;b>>=1,a=(a*a)%P)if(b&1)res=res*a%P;
return res;
} int cc[35]; int main() {
#ifndef ONLINE_JUDGE
freopen("1.in", "r", stdin);
#endif // !ONLINE_JUDGE
cin.tie(nullptr)->ios::sync_with_stdio(false);
int n; cin>>n;
rep(i,0,n){
int x; cin>>x;
cc[__builtin_ctz(x)] ++;
}
ll ans=0, tot=0;
for(int i=31;i>=0;i--){
if(cc[i]){
if(i) ans=(ans+qpow(2,tot)*(qpow(2,cc[i]-1)-1)%P)%P;
else ans=(ans+qpow(2,tot)*(qpow(2,cc[i])-1)%P)%P;
tot += cc[i];
}
}
cout<<ans;
return 0;
}

Codeforces Global Round 17的更多相关文章

  1. CodeForces Global Round 1

    CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...

  2. Codeforces Global Round 1 - D. Jongmah(动态规划)

    Problem   Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...

  3. Codeforces Global Round 2 题解

    Codeforces Global Round 2 题目链接:https://codeforces.com/contest/1119 A. Ilya and a Colorful Walk 题意: 给 ...

  4. Codeforces Global Round 1 (A-E题解)

    Codeforces Global Round 1 题目链接:https://codeforces.com/contest/1110 A. Parity 题意: 给出{ak},b,k,判断a1*b^( ...

  5. Codeforces Beta Round #17 D. Notepad (数论 + 广义欧拉定理降幂)

    Codeforces Beta Round #17 题目链接:点击我打开题目链接 大概题意: 给你 \(b\),\(n\),\(c\). 让你求:\((b)^{n-1}*(b-1)\%c\). \(2 ...

  6. Codeforces Global Round 3

    Codeforces Global Round 3 A. Another One Bites The Dust 有若干个a,有若干个b,有若干个ab.你现在要把这些串拼成一个串,使得任意两个相邻的位置 ...

  7. Codeforces Global Round 1 (CF1110) (未完结,只有 A-F)

    Codeforces Global Round 1 (CF1110) 继续补题.因为看见同学打了这场,而且涨分还不错,所以觉得这套题目可能会比较有意思. 因为下午要开学了,所以恐怕暂时不能把这套题目补 ...

  8. 【手抖康复训练1 】Codeforces Global Round 6

    [手抖康复训练1 ]Codeforces Global Round 6 总结:不想复习随意打的一场,比赛开始就是熟悉的N分钟进不去时间,2333,太久没写题的后果就是:A 题手抖过不了样例 B题秒出思 ...

  9. Codeforces Global Round 11 个人题解(B题)

    Codeforces Global Round 11 1427A. Avoiding Zero 题目链接:click here 待补 1427B. Chess Cheater 题目链接:click h ...

  10. Codeforces Beta Round #17 C. Balance DP

    C. Balance 题目链接 http://codeforces.com/contest/17/problem/C 题面 Nick likes strings very much, he likes ...

随机推荐

  1. C++迭代器种类与编译期间多态

    迭代器分类 C++ STL 中根据移动能力将迭代器分成了 5 类: Input Iterator 输入迭代器,只支持 operator++ 操作. Output Iterator 输出迭代器,只支持 ...

  2. MyBatis的使用八(动态SQL)

    本主要讲述mybatis处理动态sql语句 一. 问题引入 前端展示的数据表格中,查询条件可能不止一个,如何将用户输入的多个查询条件,拼接到sql语句中呢? DynamicMapper接口声明如下 p ...

  3. Pytest插件之pytest-base-url切换测试环境

    Pytest插件之pytest-base-url切换测试环境 安装  pip install pytest-base-url 应用场景 利用参数--base-url或者配置(pytest.ini中ba ...

  4. 不用Blazor WebAssembly,开发在浏览器端编译和运行C#代码的网站

    本文中,我将会为大家分享一个如何用.NET技术开发"在浏览器端编译和运行C#代码的工具",核心的技术就是用C#编写不依赖于Blazor框架的WebAssembly以及Roslyn技 ...

  5. 实现一个简单的在浏览器运行Dotnet编辑器

    之前已经实现过Blazor在线编译了,现在我们 实现一个简单的在浏览器运行的编辑器,并且让他可以编译我们的C#代码, 技术栈: Roslyn 用于编译c#代码 [monaco](microsoft/m ...

  6. 【笔记向】package.json main 作用

    package.json main 作用 在 package.json 文件中,"main" 字段指定了这个包在被其他包依赖时,入口文件的文件名. 例如,如果在 package.j ...

  7. redis实现分布式锁(包含代码以及分析利弊)

    redis实现分布式锁(基础版) 使用redis实现分布式锁的方法有多种,基础版本是基于setnx命令,即如果不存在则设置.这个命令可以保证只有一个客户端能够成功设置一个key,从而获得锁.设置key ...

  8. JAVA虚拟机18---方法调用

    1.简介 方法调用并不等同于方法中的代码被执行,方法调用阶段唯一的任务就是确定被调用方法的版本(即调用哪一个方法),暂时还未涉及方法内部的具体运行过程.在程序运行时,进行方法调用是最普遍.最频繁的操作 ...

  9. PDF-XChange Editor

    软件简介 PDF-XChange Editor官方版是PDF-XChange的增强版本编辑器,软件完全绿色免费,且功能无限制.PDF-XChange Editor官方版主要提供PDF电子文档的编辑功能 ...

  10. ICSharpCode.SharpZipLib.Zip 解析时报错System.NotSupportedException: No data is available for encoding 936

    分析原因 利用ICSharpCode.SharpZipLib.Zip进行APK解析时,因为APK内编译的名称为中文,查询微软开发文档936为gb2312中文编码 微软开发文档地址https://doc ...