线程池的作用
线程池,顾名思义,线程对象池。Task和TPL都有用到线程池,所以了解线程池的内幕有助于你写出更好的程序。由于篇幅有限,在这里我只讲解以下核心概念:

  • 线程池的大小

  • 如何调用线程池添加任务

  • 线程池如何执行任务

Threadpool也支持操控IOCP的线程,但在这里我们不研究它,涉及到task和TPL的会在其各自的博客中做详解。
线程池的大小
不管什么池,总有尺寸,ThreadPool也不例外。ThreadPool提供了4个方法来调整线程池的大小:

  • SetMaxThreads

  • GetMaxThreads

  • SetMinThreads

  • GetMinThreads

SetMaxThreads指定线程池最多可以有多少个线程,而GetMaxThreads自然就是获取这个值。SetMinThreads指定线程池中最少存活的线程的数量,而GetMinThreads就是获取这个值。
为何要设置一个最大数量和有一个最小数量呢?原来线程池的大小取决于若干因素,如虚拟地址空间的大小等。比如你的计算机是4g内存,而一个线程的初始堆栈大小为1m,那么你最多能创建4g/1m的线程(忽略操作系统本身以及其他进程内存分配);正因为线程有内存开销,所以如果线程池的线程过多而又没有被完全使用,那么这就是对内存的一种浪费,所以限制线程池的最大数是很make sense的。
那么最小数又是为啥?线程池就是线程的对象池,对象池的最大的用处是重用对象。为啥要重用线程,因为线程的创建与销毁都要占用大量的cpu时间。所以在高并发状态下,线程池由于无需创建销毁线程节约了大量时间,提高了系统的响应能力和吞吐量。最小数可以让你调整最小的存活线程数量来应对不同的高并发场景。
如何调用线程池添加任务
线程池主要提供了2个方法来调用:QueueUserWorkItem和UnsafeQueueUserWorkItem。
两个方法的代码基本一致,除了attribute不同,QueueUserWorkItem可以被partial trust的代码调用,而UnsafeQueueUserWorkItem只能被full trust的代码调用。

 public static bool QueueUserWorkItem(WaitCallback callBack) 
{
StackCrawlMark stackMark = StackCrawlMark.LookForMyCaller;
     return ThreadPool.QueueUserWorkItemHelper(callBack, (object) null, ref stackMark, true);
}

QueueUserWorkItemHelper首先调用ThreadPool.EnsureVMInitialized()来确保CLR虚拟机初始化(VM是一个统称,不是单指java虚拟机,也可以指CLR的execution engine),紧接着实例化ThreadPoolWorkQueue,最后调用ThreadPoolWorkQueue的Enqueue方法并传入callback和true。

[SecurityCritical]

public void Enqueue(IThreadPoolWorkItem callback, bool forceGlobal)

{

ThreadPoolWorkQueueThreadLocals queueThreadLocals = (ThreadPoolWorkQueueThreadLocals) null;

if (!forceGlobal)

queueThreadLocals = ThreadPoolWorkQueueThreadLocals.threadLocals;

if (this.loggingEnabled)

FrameworkEventSource.Log.ThreadPoolEnqueueWorkObject((object) callback);

if (queueThreadLocals != null)

{

queueThreadLocals.workStealingQueue.LocalPush(callback);

}

else

{

ThreadPoolWorkQueue.QueueSegment comparand = this.queueHead;

while (!comparand.TryEnqueue(callback))

{

Interlocked.CompareExchange<ThreadPoolWorkQueue.QueueSegment>(ref comparand.Next, new ThreadPoolWorkQueue.QueueSegment(), (ThreadPoolWorkQueue.QueueSegment) null);

for (; comparand.Next != null; comparand = this.queueHead)

Interlocked.CompareExchange<ThreadPoolWorkQueue.QueueSegment>(ref this.queueHead, comparand.Next, comparand);

}

}

this.EnsureThreadRequested();

}

ThreadPoolWorkQueue主要包含2个“queue”(实际是数组),一个为QueueSegment(global work queue),另一个是WorkStealingQueue(local work queue)。两者具体的区别会在Task/TPL里讲解,这里暂不解释。
由于forceGlobal是true,所以执行到了comparand.TryEnqueue(callback),也就是QueueSegment.TryEnqueue。comparand先从队列的头(queueHead)开始enqueue,如果不行就继续往下enqueue,成功后再赋值给queueHead。
让我们来看看QueueSegment的源代码:

public QueueSegment()

{

this.nodes = new IThreadPoolWorkItem[256];

}

public bool TryEnqueue(IThreadPoolWorkItem node)

{

int upper;

int lower;

this.GetIndexes(out upper, out lower);

while (upper != this.nodes.Length)

{

if (this.CompareExchangeIndexes(ref upper, upper + 1, ref lower, lower))

{

Volatile.Write<IThreadPoolWorkItem>(ref this.nodes[upper], node);

return true;

}

}

return false;

}

这个所谓的global work queue实际上是一个IThreadPoolWorkItem的数组,而且限死256,这是为啥?难道是因为和IIS线程池(也只有256个线程)对齐?使用interlock和内存写屏障volatile.write来保证nodes的正确性,比起同步锁性能有很大的提高。最后调用EnsureThreadRequested,EnsureThreadRequested会调用QCall把请求发送至CLR,由CLR调度ThreadPool。
线程池如何执行任务
线程被调度后通过ThreadPoolWorkQueue的Dispatch方法来执行callback。

internal static bool Dispatch()

{

ThreadPoolWorkQueue threadPoolWorkQueue = ThreadPoolGlobals.workQueue;

int tickCount = Environment.TickCount;

threadPoolWorkQueue.MarkThreadRequestSatisfied();

threadPoolWorkQueue.loggingEnabled = FrameworkEventSource.Log.IsEnabled(EventLevel.Verbose, (EventKeywords) 18);

bool flag1 = true;

IThreadPoolWorkItem callback = (IThreadPoolWorkItem) null;

try

{

ThreadPoolWorkQueueThreadLocals tl = threadPoolWorkQueue.EnsureCurrentThreadHasQueue();

while ((long) (Environment.TickCount - tickCount) < (long) ThreadPoolGlobals.tpQuantum)

{

try

{

}

finally

{

bool missedSteal = false;

threadPoolWorkQueue.Dequeue(tl, out callback, out missedSteal);

if (callback == null)

flag1 = missedSteal;

else

threadPoolWorkQueue.EnsureThreadRequested();

}

if (callback == null)

return true;

if (threadPoolWorkQueue.loggingEnabled)

FrameworkEventSource.Log.ThreadPoolDequeueWorkObject((object) callback);

if (ThreadPoolGlobals.enableWorkerTracking)

{

bool flag2 = false;

try

{

try

{

}

finally

{

ThreadPool.ReportThreadStatus(true);

flag2 = true;

}

callback.ExecuteWorkItem();

callback = (IThreadPoolWorkItem) null;

}

finally

{

if (flag2)

ThreadPool.ReportThreadStatus(false);

}

}

else

{

callback.ExecuteWorkItem();

callback = (IThreadPoolWorkItem) null;

}

if (!ThreadPool.NotifyWorkItemComplete())

return false;

}

return true;

}

catch (ThreadAbortException ex)

{

if (callback != null)

callback.MarkAborted(ex);

flag1 = false;

}

finally

{

if (flag1)

threadPoolWorkQueue.EnsureThreadRequested();

}

return true;

}

while语句判断如果执行时间少于30ms会不断继续执行下一个callback。这是因为大多数机器线程切换大概在30ms,如果该线程只执行了不到30ms就在等待中断线程切换那就太浪费CPU了,浪费可耻啊!
Dequeue负责找到需要执行的callback:

public void Dequeue(ThreadPoolWorkQueueThreadLocals tl, out IThreadPoolWorkItem callback, out bool missedSteal)

{

callback = (IThreadPoolWorkItem) null;

missedSteal = false;

ThreadPoolWorkQueue.WorkStealingQueue workStealingQueue1 = tl.workStealingQueue;

workStealingQueue1.LocalPop(out callback);

if (callback == null)

{

for (ThreadPoolWorkQueue.QueueSegment comparand = this.queueTail; !comparand.TryDequeue(out callback) && comparand.Next != null && comparand.IsUsedUp(); comparand = this.queueTail)

Interlocked.CompareExchange<ThreadPoolWorkQueue.QueueSegment>(ref this.queueTail, comparand.Next, comparand);

}

if (callback != null)

return;

ThreadPoolWorkQueue.WorkStealingQueue[] current = ThreadPoolWorkQueue.allThreadQueues.Current;

int num = tl.random.Next(current.Length);

for (int length = current.Length; length > 0; --length)

{

ThreadPoolWorkQueue.WorkStealingQueue workStealingQueue2 = Volatile.Read<ThreadPoolWorkQueue.WorkStealingQueue>(ref current[num % current.Length]);

if (workStealingQueue2 != null && workStealingQueue2 != workStealingQueue1 && workStealingQueue2.TrySteal(out callback, ref missedSteal))

break;

++num;

}

}

因为我们把callback添加到了global work queue,所以local work queue(workStealingQueue.LocalPop(out callback))找不到callback,local work queue查找callback会在task里讲解。接着又去global work queue查找,先从global work queue的起始位置查找直至尾部,因此global work quque里的callback是FIFO的执行顺序。

public bool TryDequeue(out IThreadPoolWorkItem node)

{

int upper;

int lower;

this.GetIndexes(out upper, out lower);

while (lower != upper)

{

// ISSUE: explicit reference operation

// ISSUE: variable of a reference type

int& prevUpper = @upper;

// ISSUE: explicit reference operation

int newUpper = ^prevUpper;

// ISSUE: explicit reference operation

// ISSUE: variable of a reference type

int& prevLower = @lower;

// ISSUE: explicit reference operation

int newLower = ^prevLower + 1;

if (this.CompareExchangeIndexes(prevUpper, newUpper, prevLower, newLower))

{

SpinWait spinWait = new SpinWait();

while ((node = Volatile.Read<IThreadPoolWorkItem>(ref this.nodes[lower])) == null)

spinWait.SpinOnce();

this.nodes[lower] = (IThreadPoolWorkItem) null;

return true;

}

}

node = (IThreadPoolWorkItem) null;

return false;

}

使用自旋锁和内存读屏障来避免内核态和用户态的切换,提高了获取callback的性能。如果还是没有callback,那么就从所有的local work queue里随机选取一个,然后在该local work queue里“偷取”一个任务(callback)。
拿到callback后执行callback.ExecuteWorkItem(),通知完成。
总结
ThreadPool提供了方法调整线程池最少活跃的线程来应对不同的并发场景。ThreadPool带有2个work queue,一个golbal一个local。执行时先从local找任务,接着去global,最后才会去随机选取一个local偷一个任务,其中global是FIFO的执行顺序。Work queue实际上是数组,使用了大量的自旋锁和内存屏障来提高性能。但是在偷取任务上,是否可以考虑得更多,随机选择一个local太随意。首先要考虑偷取的队列上必须有可执行任务;其次可以选取一个不在调度中的线程的local work queue,这样降低了自旋锁的可能性,加快了偷取的速度;最后,偷取的时候可以考虑像golang一样偷取别人queue里一半的任务,因为执行完偷到的这一个任务之后,下次该线程再次被调度到还是可能没任务可执行,还得去偷取别人的任务,这样既浪费CPU时间,又让任务在线程上分布不均匀,降低了系统吞吐量!

另外,如果禁用log和ETW trace,可以使ThreadPool的性能更进一步。

.net线程池的更多相关文章

  1. 多线程爬坑之路-学习多线程需要来了解哪些东西?(concurrent并发包的数据结构和线程池,Locks锁,Atomic原子类)

    前言:刚学习了一段机器学习,最近需要重构一个java项目,又赶过来看java.大多是线程代码,没办法,那时候总觉得多线程是个很难的部分很少用到,所以一直没下决定去啃,那些年留下的坑,总是得自己跳进去填 ...

  2. C#多线程之线程池篇3

    在上一篇C#多线程之线程池篇2中,我们主要学习了线程池和并行度以及如何实现取消选项的相关知识.在这一篇中,我们主要学习如何使用等待句柄和超时.使用计时器和使用BackgroundWorker组件的相关 ...

  3. C#多线程之线程池篇2

    在上一篇C#多线程之线程池篇1中,我们主要学习了如何在线程池中调用委托以及如何在线程池中执行异步操作,在这篇中,我们将学习线程池和并行度.实现取消选项的相关知识. 三.线程池和并行度 在这一小节中,我 ...

  4. C#多线程之线程池篇1

    在C#多线程之线程池篇中,我们将学习多线程访问共享资源的一些通用的技术,我们将学习到以下知识点: 在线程池中调用委托 在线程池中执行异步操作 线程池和并行度 实现取消选项 使用等待句柄和超时 使用计时 ...

  5. NGINX引入线程池 性能提升9倍

    1. 引言 正如我们所知,NGINX采用了异步.事件驱动的方法来处理连接.这种处理方式无需(像使用传统架构的服务器一样)为每个请求创建额外的专用进程或者线程,而是在一个工作进程中处理多个连接和请求.为 ...

  6. Java线程池解析

    Java的一大优势是能完成多线程任务,对线程的封装和调度非常好,那么它又是如何实现的呢? jdk的包下和线程相关类的类图. 从上面可以看出Java的线程池主的实现类主要有两个类ThreadPoolEx ...

  7. Android线程管理之ExecutorService线程池

    前言: 上篇学习了线程Thread的使用,今天来学习一下线程池ExecutorService. 线程管理相关文章地址: Android线程管理之Thread使用总结 Android线程管理之Execu ...

  8. Android线程管理之ThreadPoolExecutor自定义线程池

    前言: 上篇主要介绍了使用线程池的好处以及ExecutorService接口,然后学习了通过Executors工厂类生成满足不同需求的简单线程池,但是有时候我们需要相对复杂的线程池的时候就需要我们自己 ...

  9. -Android -线程池 批量上传图片 -附php接收代码

    (出处:http://www.cnblogs.com/linguanh/) 目录: 1,前序 2,类特点 3,用法 4,java代码 5,php代码 1,前序 还是源于重构,看着之前为赶时间写着的碎片 ...

  10. C#多线程--线程池(ThreadPool)

    先引入一下线程池的概念: 百度百科:线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务.线程池线程都是后台线程.每个线程都使用默认的堆栈大小,以默认的优先级运行, ...

随机推荐

  1. 几款开源的hybird移动app框架分析

    几款开源的Hybrid移动app框架分析 Ionic Onsen UI 与 ionic 相比 jQuery Mobile Mobile Angular UI 结论 很多移动开发者喜欢使用原生代码开发, ...

  2. jQuery网站顶部定时折叠广告

    效果体验:http://hovertree.com/texiao/jquery/4.htm HTML文件代码: <!DOCTYPE html> <html xmlns="h ...

  3. jQuery - 全国省市县三级联动

    最近有空用jquery做了一个全国省市县的三级联动,在以后或许可以用的到 ,遗憾的是我还没用封装,等有空看能不能封装成一个插件 废话不多说,贴上代码: <!doctype html> &l ...

  4. 【代码笔记】iOS-图文混排(HBLabelDemo)

    一,效果图. 二,工程图. 三,代码. ViewController.h #import <UIKit/UIKit.h> @interface ViewController : UIVie ...

  5. IOS开发之Bug--使用KVC的易错情况

    1.其实某些角度而言KVC是一个破坏封装又暴力的做法,而我已经两次因为KVC而导致应用程序出现闪退的情况. 场景:1.使用KVC修改某一个UIView的属性,比如width.    2.在viewWi ...

  6. Maven之 聚合与继承 详解

    说到聚合与继承我们都很熟悉,maven同样也具备这样的设计原则,下面我们来看一下Maven的pom如何进行聚合与继承的配置实现. 一.为什么要聚合? 随着技术的飞速发展和各类用户对软件的要求越来越高, ...

  7. JavaWeb工程中web.xml基本配置

    一.理论准备 先说下我记得xml规则,必须有且只有一个根节点,大小写敏感,标签不嵌套,必须配对. web.xml是不是必须的呢?不是的,只要你不用到里面的配置信息就好了,不过在大型web工程下使用该文 ...

  8. Windows 64位下装Oracle 11g,PLSQL Developer的配置问题,数据库处显示为空白的解决方案

    安装pl sql 后,若下图的数据库处为空.则需要安装32位的客户端,说明pl sql不支持64位客户端连接. 解决办法:  1.下载32位Oracle客户端,并安装 2.设置PLSQL Develo ...

  9. 大数据系列(4)——Hadoop集群VSFTP和SecureCRT安装配置

    前言 经过前三篇文章的介绍,已经通过VMware安装了Hadoop的集群环境,当然,我相信安装的过程肯定遇到或多或少的问题,这些都需要自己解决,解决的过程就是学习的过程,本篇的来介绍几个Hadoop环 ...

  10. Form 引用方法库

    进入注册表,win+R 输入:regedit,找到HKEY_LOCAL_MACHINE->SOFTWARE->ORACLE ,在右侧找到:FORMS60_PATH,双击,把方法库的路径以英 ...