title: Graph-Based Social Relation Reasoning, 2020

task: we propose a simpler, faster, and more accurate method named graph relational reasoning network (GR2N) for social relation recognition.

abstract: Understanding social relations from an image has great potential for intelligent systems such as social chatbots and personal assistants.  Different from existing methods that process all social relations on an image independently, our method considers the paradigm of jointly inferring the relations by constructing a social relation graph.  Furthermore, the proposed GR2N constructs several virtual relation graphs to explicitly grasp the strong logical constraints among different types of social relations.

通过图像来理解社会关系对于智能系统,如社交聊天机器人和个人助理有着巨大的潜力。不同于现有的在一个图像上独立处理所有社会关系的方法,我们的方法考虑了通过构造一个社会关系图来共同推断关系的范式。此外,所提出的GR2N构造了若干虚拟关系图,以显式地把握不同类型社会关系之间的强逻辑约束。

由于潜在的隐私风险警告等广泛的应用,人们对在给定的静止图像中理解人与人之间的关系越来越感兴趣, 智能自主系统[52],群活性分析[19]。

由于社会关系通常形成一个合理的社会场景,它们不是相互独立的,而是高度相关的。 独立地预测同一图象上的关系,需要从社会场景的高局部性出发,这可能会导致社会关系图的不合理和矛盾。(Independently predicting the relations on the same image suffers from the high locality in social scenes, which may result in an unreasonable and contradictory social relation graph.)

为此,我们认为,共同推断每个图像的所有关系有助于构建一个合理的、一致的社会关系图,同时对社会场景有一个透彻的理解。

To this end, we consider that jointly inferring all relations for each image helps construct a reasonable and consistent social relation graph with a thorough understanding of the social scene.

此外,由于同一图像上的社会关系往往遵循较强的逻辑约束 logical constraints,,同时考虑所有关系可以有效地利用这些关系的一致性。

显然,同一图像上的关系在推理中是相互帮助的,这在现有的方法中并没有作为一个重要的线索加以利用。

we propose a graph relational reasoning network (GR2N)

现有的gnn方法大多只是通过消息传递来利用上下文信息,无法明确把握不同类型社会关系之间的逻辑约束。(Most existing GNNs' methods simply exploit contextual information via message passing, which fails to explicitly grasp the logical constraints among different types of social relations.)

为了利用强逻辑约束,提出的GR2N用共享节点表示为不同的关系类型构造不同的虚拟关系图。(To exploit the strong logical constraints, the proposed GR2N constructs different virtual relation graphs for different relation types with shared node representations.)

我们的方法在每个虚拟关系图上学习特定于类型的消息,并通过汇总所有虚拟关系图上的所有邻居消息来更新节点表示。 最后,节点的最终表示可用来预测图上所有节点对的关系。Our method learns type-specificc messages on each virtual relation graph and updates the node representations by aggregating all neighbor messages across all virtual relation graphs. In the end, the final representations of nodes are utilized to predict the relations of all pairs of nodes on the graph.

Graph-Based Social Relation Reasoning的更多相关文章

  1. social relation & recommender system

    由于社交网络盛行,现在许多关于推荐系统的研究都考虑了如何使用social relation来改进推荐系统.虽然有很多论文都成功的使用social relation改进了推荐效果,然而,也有一些尝试失败 ...

  2. Graph Based SLAM 基本原理

    作者 | Alex 01 引言 SLAM 基本框架大致分为两大类:基于概率的方法如 EKF, UKF, particle filters 和基于图的方法 .基于图的方法本质上是种优化方法,一个以最小化 ...

  3. 论文阅读-Temporal Phenotyping from Longitudinal Electronic Health Records: A Graph Based Framework

  4. Visualizing MNIST with t-SNE, MDS, Sammon’s Mapping and Nearest neighbor graph

    MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, n ...

  5. Survey of single-target visual tracking methods based on online learning 翻译

    基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简 ...

  6. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  7. CVPR 2017 Paper list

    CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...

  8. zz【清华NLP】图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐

    [清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengy ...

  9. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

随机推荐

  1. PicLite 开发日志 v0.0.2

    PicLite 开发日志 (v0.0.2) 感谢您阅读本片文章! Gitee 地址:https://gitee.com/XiaoQuQuSD/pic-lite. 新增功能 添加复制 url 的格式选项 ...

  2. vue动态路由实现原理 addRoute

    vue新版router.addRoute基础用法 新版Vue Router中用router.addRoute来替代原有的router.addRoutes来动态添加路由.子路由 在添加子路由的时候 比如 ...

  3. rocketmq消息及流程

    1.为什么用mq 优势 主要有3个: 应用解耦(降低微服务之间的关联). 异步提速(微服务拿到mq消息后同时工作). 削峰填谷(可以消息堆积) 劣势 系统可用性降低(MQ一旦宕机整个系统不可用) 复杂 ...

  4. Java SE 01

    强类型语言 要求变量的使用要严格符合规定,所有变量都必须先定义后使用 Java的数据类型分为两大类 基本类型(promitive type) 数值类型 ① 整数类型 byte 占1个字节范围:-128 ...

  5. Linux进程总结

    一个执着于技术的公众号 进程 进程,是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.它的执行需要系统分配资源创建实体之后,才能进行.举个例子: ...

  6. Nginx的mirror指令能干啥?

    mirror 流量复制 Nginx的 mirror 指令来自于 ngx_http_mirror_module 模块 Nginx Version > 1.13.4 mirror 指令提供的核心功能 ...

  7. UNIAPP实现PDA扫码

    目前我接触到了两种方法,以扫码pda安卓采集器(可以直接理解为手机上有个激光扫码)的设置划分. 1.扫描设置 --> 键盘方式输出(键盘类型:物理键盘),注意设置要看具体的型号: 2.扫码设置 ...

  8. windbg的时间旅行实现对 C# 程序的终极调试

    一:什么是时间旅行 简而言之就是把程序的执行流拍成vlog,这样就可以对 vlog 快进或者倒退,还可以分享给别人做进一步的分析,是不是想都不敢想. 很开心的是 windbg preview 版本中已 ...

  9. Blazor和Vue对比学习(基础1.8):Blazor中实现计算属性和数据监听

    1.7章<传递UI片断>,需要做几个案例,这部分暂停消化几天.我们先把基础部分相对简单的最后两章学习了. 计算属性和数据监听是Vue当中的概念,本质上都是监听数据的变化,然后做出响应.两者 ...

  10. 1903021121-刘明伟 实验二 JAVA第2周作业—代码插入

    项目 内容 课程班级博客链接 19信计班(本)  作业要求链接  第2周作业 要求 截图(只截运行结果) 扩展阅读 https://www.cnblogs.com/thelovelybugfly/p/ ...