(数据科学学习手札138)使用sklearnex大幅加速scikit-learn运算
本文示例代码已上传至我的
Github
仓库https://github.com/CNFeffery/DataScienceStudyNotes
1 简介
大家好我是费老师,scikit-learn
作为经典的机器学习框架,从诞生至今已发展了十余年,但其运算速度一直广受用户的诟病。熟悉scikit-learn
的朋友应该清楚,scikit-learn
中自带的一些基于joblib
等库的运算加速功能效果有限,并不能很充分地利用算力。
而今天我要给大家介绍的知识,可以帮助我们在不改变原有代码的基础上,获得数十倍甚至上千倍的scikit-learn
运算效率提升,let's go!
2 利用sklearnex加速scikit-learn
为了达到加速运算的效果,我们只需要额外安装sklearnex
这个拓展库,就可以帮助我们在拥有intel处理器的设备上,获得大幅度的运算效率提升。
抱着谨慎尝鲜的态度,我们可以在单独的conda
虚拟环境中做实验,全部命令如下,我们顺便安装jupyterlab
作为IDE:
conda create -n scikit-learn-intelex-demo python=3.8 -c https://mirrors.sjtug.sjtu.edu.cn/anaconda/pkgs/main -y
conda activate scikit-learn-intelex-demo
pip install scikit-learn scikit-learn-intelex jupyterlab -i https://pypi.douban.com/simple/
完成实验环境的准备后,我们在jupyter lab
中编写测试用代码来看看加速效果如何,使用方式很简单,我们只需要在代码中导入scikit-learn
相关功能模块之前,运行下列代码即可:
from sklearnex import patch_sklearn, unpatch_sklearn
patch_sklearn()
成功开启加速模式后会打印以下信息:
其他要做的仅仅是将你原本的scikit-learn
代码在后面继续执行即可,我在自己平时写作以及开发开源项目的老款拯救者笔记本上简单测试了一下。
以线性回归为例,在百万级别样本量以及上百个特征的示例数据集上,开启加速后仅耗时0.21秒就完成对训练集的训练,而使用unpatch_sklearn()
强制关闭加速模式后(注意scikit-learn
相关模块需要重新导入),训练耗时随即上升到11.28秒,意味着通过sklearnex
我们获得了50多倍的运算速度提升!
而按照官方的说法,越强劲的CPU可以获得的性能提升比例也会更高,下图是官方在Intel Xeon Platinum 8275CL
处理器下测试了一系列算法后得出的性能提升结果,不仅可以提升训练速度,还可以提升模型推理预测速度,在某些场景下甚至达到数千倍的性能提升:
官方也提供了一些ipynb
示例(https://github.com/intel/scikit-learn-intelex/tree/master/examples/notebooks
),展示了包含K-means
、DBSCAN
、随机森林
、逻辑回归
、岭回归
等多种常用算法示例,感兴趣的读者朋友们可以自行下载学习。
以上就是本文的全部内容,欢迎在评论区与我进行讨论~
(数据科学学习手札138)使用sklearnex大幅加速scikit-learn运算的更多相关文章
- (数据科学学习手札86)全平台支持的pandas运算加速神器
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 随着其功能的不断优化与扩充,pandas已然成为 ...
- (数据科学学习手札55)利用ggthemr来美化ggplot2图像
一.简介 R中的ggplot2是一个非常强大灵活的数据可视化包,熟悉其绘图规则后便可以自由地生成各种可视化图像,但其默认的色彩和样式在很多时候难免有些过于朴素,本文将要介绍的ggthemr包专门针对原 ...
- (数据科学学习手札50)基于Python的网络数据采集-selenium篇(上)
一.简介 接着几个月之前的(数据科学学习手札31)基于Python的网络数据采集(初级篇),在那篇文章中,我们介绍了关于网络爬虫的基础知识(基本的请求库,基本的解析库,CSS,正则表达式等),在那篇文 ...
- (数据科学学习手札49)Scala中的模式匹配
一.简介 Scala中的模式匹配类似Java中的switch语句,且更加稳健,本文就将针对Scala中模式匹配的一些基本实例进行介绍: 二.Scala中的模式匹配 2.1 基本格式 Scala中模式匹 ...
- (数据科学学习手札47)基于Python的网络数据采集实战(2)
一.简介 马上大四了,最近在暑期实习,在数据挖掘的主业之外,也帮助同事做了很多网络数据采集的内容,接下来的数篇文章就将一一罗列出来,来续写几个月前开的这个网络数据采集实战的坑. 二.马蜂窝评论数据采集 ...
- (数据科学学习手札44)在Keras中训练多层感知机
一.简介 Keras是有着自主的一套前端控制语法,后端基于tensorflow和theano的深度学习框架,因为其搭建神经网络简单快捷明了的语法风格,可以帮助使用者更快捷的搭建自己的神经网络,堪称深度 ...
- (数据科学学习手札42)folium进阶内容介绍
一.简介 在上一篇(数据科学学习手札41)中我们了解了folium的基础内容,实际上folium在地理信息可视化上的真正过人之处在于其绘制图像的高度可定制化上,本文就将基于folium官方文档中的一些 ...
- (数据科学学习手札40)tensorflow实现LSTM时间序列预测
一.简介 上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在实际时间序列预测任务中搭建模型来完 ...
- (数据科学学习手札36)tensorflow实现MLP
一.简介 我们在前面的数据科学学习手札34中也介绍过,作为最典型的神经网络,多层感知机(MLP)结构简单且规则,并且在隐层设计的足够完善时,可以拟合任意连续函数,而除了利用前面介绍的sklearn.n ...
随机推荐
- oracle system,sys用户 忘记密码,怎么修改密码
sys用户是Oracle中权限最高的用户,而system是一个用于数据库管理的用户.在数据库安装完之后,应立即修改sys,system这两个用户的密码,以保证数据库的安全.但是我们有时候会遗忘密码或者 ...
- 前端之HTML标签
一:HTML简介 1.超文本标记语言(Hypertext Markup Language, HTML)是一种用于创建网页的标记语言. 2.本质上是浏览器可识别的规则,我们按照规则写网页,浏览器根据规则 ...
- MDL锁
mdl锁的主要作用是用来维护表元数据的一致性.在表上有活动事务的时候,不可以对表元数据进行修改操作. 如果没有MDL锁的保护,那么session2可以直接执行,并导致session1出错. MDL锁是 ...
- SSM整合_年轻人的第一个增删改查_新增
写在前面 SSM整合_年轻人的第一个增删改查_基础环境搭建 SSM整合_年轻人的第一个增删改查_查找 SSM整合_年轻人的第一个增删改查_新增 SSM整合_年轻人的第一个增删改查_修改 SSM整合_年 ...
- docker进阶_dockerswarm
DockerSwarm Docker Swarm简介 Docker Swarm的功能 Docker Swarm包含两个方面:docker安全集群,以及一个微服务应用引擎 集群方面,swarm将 ...
- 【mq】从零开始实现 mq-01-生产者、消费者启动
MQ 是什么? MQ(Message Queue)消息队列,是基础数据结构中"先进先出"的一种数据结构. 指把要传输的数据(消息)放在队列中,用队列机制来实现消息传递--生产者产生 ...
- python学习-Day38-HTML
目录 前端 简介 什么是前端 什么是后端 前端特点 前端主要技术: 前端相关技能 关于 HTTP 的知识在这里 HTML 什么是HTML HTML 实例 实例解析 HTML 标签 HTML 元素 HT ...
- 【ACM程序设计】差分
差分 假设有一个数列,我们需要对数列中的一个区间加上或减去一个值,直接想到的便是对该区间进行一次循环逐项加减. 但是当请求的操作变得非常多的时候,每次请求都进行一次循环会很容易爆时间,因此我们引入了差 ...
- Linux_yum源仓库-本地-网络-练习实验
1.本地光盘挂载使用yum源 实验环境centos8 系统版本CentOS-8.3.2011-x86_64-dvd1 1)配置前检查 1.1 虚拟机设置选择对应版本镜像文件 1.2 启动虚拟机后处于连 ...
- 测试覆盖率 之 Cobertura的使用
什么是代码覆盖率? 代码覆盖率是对整个测试过程中被执行的代码的衡量,它能测量源代码中的哪些语句在测试中被执行,哪些语句尚未被执行. 为什么要测量代码覆盖率? 众所周知,测试可以提高软件版本的质量和可预 ...