CF498B题解
咋黑色啊,这不是看到数据范围就去想 \(O(nT)\) 的做法吗?
然后仔细想想最靠谱的就是 DP。
设 \(dp[n][T]\) 表示听完第 \(n\) 首歌,总共听了 \(T\) 秒。
很明显有 \(dp[n][T]=dp[n-1][T-t_n] \times (1-p)^{t_n}+\sum_{i=1}^{t_n}dp[n-1][T-i] \times (1-p)^{i-1} \times p\)。
很明显这个是 \(O(nT^2)\) 的,接下来开始优化。
我们先先写成 \(dp[n][T]=\sum_{i=1}^{t_n}dp[n-1][T-i] \times (1-p)^{i-1}\),最后令每一项乘上 \(p\)。
发现这个有点儿像把一个长度为 \(t_n\) 的区间当做一个多项式,翻转过来后带入 \(1-p\),我们考虑每次平移一下这个多项式,再去掉多余的项。
然后你发现这个多项式带入后的值其实就是 \(dp[n][T-1]\),所以并不需要新开一个变量。
预处理一下幂就可以做到 \(O(nT)\) 了。
答案为 \(\sum_{i=1}^n\sum_{j=1}^T dp[i][j]\)。
#include<cstdio>
#include<cmath>
typedef long double db;
const int M=5005;
int n,m,t;double p,pw,ans,S[M],dp[2][M];
signed main(){
int i,x;scanf("%d%d",&n,&m);dp[0][0]=1;
for(int T=1;T<=n;++T){
scanf("%d%d",&x,&t);p=.01*x;pw=pow(1-p,t);dp[T&1][0]=0;
for(i=1;i<=m;++i)dp[T&1][i]=dp[T&1][i-1]*(1-p)+dp[T&1^1][i-1],i>t&&(dp[T&1][i]-=dp[T&1^1][i-t-1]*pw);
for(i=1;i<=m;++i)dp[T&1][i]*=p,i>=t&&(dp[T&1][i]+=dp[T&1^1][i-t]*pw),ans+=dp[T&1][i];
}
printf("%.9lf",ans);
}
CF498B题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- 样式操作案例5-改变box的大小和位置
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 模仿UIApplication单例
要求:程序一启动就创建创建对象.创建的对象只能通过share的⽅方式获取对象.不能够进行alloc 操作,当执⾏行alloc时, 程序发生崩溃 1.程序一启动的时候就创建对象.当类被加载到内存的时候就 ...
- 使用Reachability监测网络变化-陈鹏
在appdelegate里面添加观察者,并启动监测 // 使用通知中心监听kReachabilityChangedNotification通知 [[NSNotificationCenter defau ...
- Ansible之roles模块--lnmp分布式部署
Ansible之roles模块--lnmp分布式部署 目录 Ansible之roles模块--lnmp分布式部署 1. role模块的作用 2. roles的目录结构 3. roles内个目录含义解释 ...
- STM32 HAL 库实现乒乓缓存加空闲中断的串口 DMA 收发机制,轻松跑上 2M 波特率
前言 直接储存器访问(Direct Memory Access,DMA),允许一些设备独立地访问数据,而不需要经过 CPU 介入处理.因此在访问大量数据时,使用 DMA 可以节约可观的 CPU 处理时 ...
- HTTP协议和HTTPS协议的那些事
文章目录 HTTPS VS HTTP HTTPS=HTTP+加密+证书+完整性保护 加密 对称加密 非对称加密 混合加密 证书 完整性保护 HTTPS并不能取代HTTP SSL是把双刃剑 HTTPS的 ...
- Java IO模型:BIO、NIO、AIO
Java IO模型:BIO.NIO.AIO 本来是打算直接学习网络框架Netty的,但是先补充了一下自己对Java 几种IO模型的学习和理解.分别是 BIO.NIO.AIO三种IO模型. IO模型的基 ...
- CVE-2020-0796
CVE-2020-0796 SMBv3漏洞复现 0X00漏洞简介 Microsoft Windows和Microsoft Windows Server都是美国微软(Microsoft)公司的产品,Mi ...
- [Matlab]二维统计分析图实例
常见的二维统计分析图形: bar(x,y,选项) 条形图 stairs(x,y,选项) 阶梯图 stem(x,y,选项) 杆图 fill(x1,y1,选项1,x2,y2,选项2,--) 填充图 实例: ...
- C# typeof() 和object.GetType() 、Type..GetType()使用和区别
进行学习到表达树了,用动Tpye了.所以整理了以下他们区别和用法 总得来说他们都是为了获取某个实例具体引用的数据类型System.Type.1.GetType()方法继承自Object,所以C#中任何 ...