LGP5493题解
卡完常后来造福一下人类
如何从4.80s卡到920ms.jpg
本题解的复杂度为 \(O(\frac {n^{3/4}} {\log n})\),然而标算是 \(O(\frac {n^{2/3}} {\log^{1/3} n})\) 的。。。
有时间尝试卡一下标算,但是看样子好像已经卡过一些了,不知道能不能比我这个代码快(
首先亮出经典 DP:
\]
然后你写完之后稍微卡一下,再吸个氧就能得到4.80s的代码了。
稍微卡一下指把DP的部分中的int和ll分开,并且线性筛进行了一些神奇的优化(
然后我们开始卡。
首先加了一个FastMod,速度变成了2.57s
然后众所周知的是,实数除法比整数除法要快,变成了1.31s。
然后我们知道线性筛的原理是 用自身最小的质因子筛掉自己,那么我们没有必要用除法,将其记录下来即可,1.13s。
然后我们将减法优化改成暴力取模,发现变成了1.06s。
然后由于我的DP过程中边界是这样判的:
for(;j<=tot&&pri[i]<=(m1=w[j]*invp[i]);++j)
我们发现只需要将pri[top+1]改为INF就能够避免掉前面的那个j<=tot
,这次卡进了1s,970ms。
然后由于我们DP时每次都计算了一遍sum[i-1]+p
,我们就新开了一个变量s将其存下来,920ms。
upd:把f中的n故技重施能卡到915ms。
不知道还能不能卡/youl
upd:把前面的一些“优化”删掉之后跑了885ms。
#include<cstdio>
#include<cmath>
typedef long long ll;
typedef __uint128_t L;
typedef unsigned long long ull;
const ll M=2e5+5;
int k,p,a[15],ifac[15],sl[15],sr[15];
int S,id1[M],id2[M];ll tot,g[M<<1];ll n,w[M<<1];
int top,F[17985],pri[17985],sum[17985],pos[M];bool zhi[M];
double invp[17985];
struct FastMod{
ull b,m;
FastMod(ull b):b(b),m(ull((L(1)<<64)/b)){}
friend inline ull operator%(const ull&a,const FastMod&mod){
ull q=(L(mod.m)*a)>>64;
ull r=a-q*mod.b;
return r>=mod.b?r-mod.b:r;
}
}mod(2);
inline int pow(int a,int b){
register int ans=1;
for(;b;b>>=1,a=1ll*a*a%mod)if(b&1)ans=1ll*ans*a%mod;
return ans;
}
inline void init(){
register int i;k+=2;a[1]=sl[0]=sr[k+1]=ifac[0]=ifac[1]=1;
for(i=2;i<=k;++i)a[i]=(a[i-1]+pow(i,k-2))%mod,ifac[i]=1ll*(p-p/i)*ifac[p%i]%mod;
for(i=2;i<=k;++i)ifac[i]=1ll*ifac[i-1]*ifac[i]%mod;
for(i=1;i<=k;++i)a[i]=1ll*ifac[i-1]*(k-i&1?p-ifac[k-i]:ifac[k-i])%mod*a[i]%mod;
}
inline int f(const int&n){
register int i,N=n+p;register ull ans=0;
for(i=1;i<=k;++i)sl[i]=1ll*sl[i-1]*(N-i)%mod;
for(i=k;i>=1;--i)sr[i]=1ll*sr[i+1]*(N-i)%mod;
for(i=1;i<=k;++i)ans+=1ll*sr[i+1]*sl[i-1]%mod*a[i];
return ans%mod;
}
inline void sieve(const int&n){
register int i=6,j,x,m;top=2;
F[1]=pow(pri[1]=2,k);F[2]=pow(pri[2]=3,k);
sum[1]=F[1];sum[2]=F[1]+F[2];
invp[1]=1./2*(1+1e-15);invp[2]=1./3*(1+1e-15);
do{
if(!zhi[m=i-1]&&i-1<=n){
pri[++top]=m;sum[top]=(sum[top-1]+(F[top]=pow(m,k)))%mod;
invp[top]=1./m*(1+1e-15);
}
for(j=3;j<=top&&(x=m*pri[j])<=n;++j){
zhi[x]=true;if((pos[x]=j)==pos[m])break;
}
if(!zhi[m=i+1]&&i+1<=n){
pri[++top]=m;sum[top]=(sum[top-1]+(F[top]=pow(m,k)))%mod;
invp[top]=1./m*(1+1e-15);
}
for(j=3;j<=top&&(x=m*pri[j])<=n;++j){
zhi[x]=true;if((pos[x]=j)==pos[m])break;
}
}while((i+=6)-1<=n);pri[++top]=p;invp[top]=0;
}
void Solve(const ll&n){
const ll&n9=n/1e9;
register int i,j,k,s;register ll m,L=1,R;
for(;L<=n;L=R+1,--g[tot]){
R=n/(m=w[++tot]=1.*n/L);g[(m<=S?id1[m]:id2[R])=tot]=f(m%mod);
}
for(i=1;i<=top;++i){
s=sum[i-1]+p;
for(j=1;pri[i]<=(m=w[j]*invp[i]);++j){
g[j]+=1ll*F[i]*(s-g[m<=S?id1[m]:id2[int(1.*n/m)]])%mod;
if(g[j]>=p)g[j]-=p;
}
}
}
signed main(){
register int i=1;register ull ans=0;
scanf("%lld%d%d",&n,&k,&p);mod=FastMod(p);
sieve(S=sqrt(n));init();Solve(n);
for(register ll m;i<=S;++i){
m=1.*n/i;
ans+=1ll*i*i%mod*g[m<=S?id1[m]:id2[ll(1.*n/m)]]%mod;
if(ans>=p)ans-=p;
}
printf("%d",ans);
}
LGP5493题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- eclipse中快捷键中逗号是怎么用的,如ctrl+2,L
Ctrl +2 同时按下,松开后,再按下L
- linux安装python3.6.6和新建虚拟环境
基础准备 修改本地时区 cp -rf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime 安装epel yum源 yum -y install epel- ...
- Idea快捷键---根据自己使用情况持续更新
查看接口的实现类 -->ctrl+alt+b 查看继承关系 -->ctrl+h 快速查看上次查看代码的位置: -->ctrl+alt+方向键(注意与intel显卡快捷键的冲突,如有冲 ...
- AI模型运维——NVIDIA驱动、cuda、cudnn、nccl安装
目前大部分使用GPU的AI模型,都使用的英伟达这套. 需要注意的是,驱动.cuda.cudnn版本需要一一对应,高低版本互不兼容. 驱动和cuda对应关系:https://docs.nvidia.co ...
- 关于Synchronized你了解多少?
1.说一说自己对于 synchronized 关键字的了解 synchronized是解决多线程之间访问资源的同步性,synchronized关键字可以保证被他修饰的资源在任何时刻只有一个线程访问. ...
- Solution -「AGC 019E」「AT 2704」Shuffle and Swap
\(\mathcal{Description}\) Link. 给定 \(01\) 序列 \(\{A_n\}\) 和 \(\{B_n\}\),其中 \(1\) 的个数均为 \(k\).记 \( ...
- Solution -「ARC 104C」Fair Elevator
\(\mathcal{Description}\) Link. 数轴从 \(1\sim 2n\) 的整点上有 \(n\) 个闭区间.你只知道每个区间的部分信息(可能不知道左或右端点,或者都不知 ...
- Solution -「51nod 1584」加权约数和
\(\mathcal{Description}\) Link. 令 \(\sigma(n)\) 为 \(n\) 的约数之和.求: \[\sum_{i=1}^n\sum_{j=1}^n\max\ ...
- 今天你花里胡哨了吗 --- 定制属于自己的linux ssh迎宾信息
请开始你的表演 linux-oz6w:~ # cat << 'eof' > /etc/profile.d/ssh-login-info.sh #!/bin/sh # 输出一个图像 e ...
- SpringBoot实现QQ邮件发送
建项目 创建一个SpringBoot项目 改pom,导入相关依赖 org.springframework.boot spring-boot-starter-parent 2.2.2.RELEASE & ...