现象

在日常开发中,可能一不小心就会掉进 Go 语言的某些陷阱里,而本文要介绍的 nil ≠ nil 问题,便是其中一个,初看起来会让人觉得很诡异,摸不着头脑。

先来看个例子:

type CustomizedError struct {
ErrorCode int
Msg string
} func (e *CustomizedError) Error() string {
return fmt.Sprintf("err code: %d, msg: %s", e.ErrorCode, e.Msg)
}
func main() {
txn, err := startTx()
if err != nil {
log.Fatalf("err starting tx: %v", err)
} if err = txn.doUpdate(); err != nil {
log.Fatalf("err updating: %v", err)
} if err = txn.commit(); err != nil {
log.Fatalf("err committing: %v", err)
}
fmt.Println("success!")
} type tx struct{} func startTx() (*tx, error) {
return &tx{}, nil
} func (*tx) doUpdate() *CustomizedError {
return nil
} func (*tx) commit() error {
return nil
}

这是一个简化过了的例子,在上述代码中,我们创建了一个事务,然后做了一些更新,在更新过程中如果发生了错误,希望返回对应的错误码和提示信息。

如果感兴趣的话,可以在这个地址在线运行这份代码:

Go Playground - The Go Programming Language

看起来每个方法都会返回 nil,应该能顺利走到最后一行,输出 success 才对,但实际上,输出的却是:

err updating: <nil>

寻找原因

为什么明明返回的是 nil,却被判定为 err ≠ nil 呢?难道这个 nil 也有什么奇妙之处?

这就需要我们来更深入一点了解 error 本身了。在 Go 语言中, error 是一个 interface ,内部含有一个 Error() 函数,返回一个字符串,接口的描述如下:

// The error built-in interface type is the conventional interface for
// representing an error condition, with the nil value representing no error.
type error interface {
Error() string
}

而对于一个变量来说,它有两个要素,一个是 type T,一个是 value V,如下图所示:

来看一个简单的例子:

var it interface{}
fmt.Println(reflect.TypeOf(it), reflect.ValueOf(it)) // <nil> <invalid reflect.Value>
it = 1
fmt.Println(reflect.TypeOf(it), reflect.ValueOf(it)) // int 1
it = "hello"
fmt.Println(reflect.TypeOf(it), reflect.ValueOf(it)) // string hello
var s *string
it = s
fmt.Println(reflect.TypeOf(it), reflect.ValueOf(it)) // *string <nil>
ss := "hello"
it = &ss
fmt.Println(reflect.TypeOf(it), reflect.ValueOf(it)) // *string 0xc000096560

在给一个 interface 变量赋值前,TV 都是 nil,但给它赋值后,不仅会改变它的值,还会改变它的类型。

当把一个值为 nil 的字符串指针赋值给它后,虽然它的值是 V=nil,但它的类型 T 却变成了 *string

此时如果拿它来跟 nil 比较,结果就会是不相等,因为只有当这个 interface 变量的类型和值都未被设置时,它才真正等于 nil

再来看看之前的例子中,err 变量的 TV 是如何变化的:

func main() {
txn, err := startTx()
fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err))
if err != nil {
log.Fatalf("err starting tx: %v", err)
} if err = txn.doUpdate(); err != nil {
fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err))
log.Fatalf("err updating: %v", err)
} if err = txn.commit(); err != nil {
log.Fatalf("err committing: %v", err)
}
fmt.Println("success!")
}

输出如下:

<nil> <invalid reflect.Value>
*err.CustomizedError <nil>

在一开始,我们给 err 初始化赋值时,startTx 函数返回的是一个 error 接口类型的 nil。此时查看其类型 T 和值 V 时,都会是 nil

txn, err := startTx()
fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err)) // <nil> <invalid reflect.Value> func startTx() (*tx, error) {
return &tx{}, nil
}

而在调用 doUpdate 时,会将一个 *CustomizedError 类型的 nil 值赋值给了它,它的类型 T 便成了 *CustomizedError ,V 是 nil

err = txn.doUpdate()
fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err)) // *err.CustomizedError <nil>

所以在做 err ≠ nil 的比较时,err 的类型 T 已经不是 nil,前面已经说过,只有当一个接口变量的 TV 同时为 nil 时,这个变量才会被判定为 nil,所以该不等式会判定为 true

要修复这个问题,其实最简单的方法便是在调用 doUpdate 方法时给 err 进行重新声明:

if err := txn.doUpdate(); err != nil {
log.Fatalf("err updating: %v", err)
}

此时,err 其实成了一个新的结构体指针变量,而不再是一个interface 类型变量,类型为 *CustomizedError ,且值为 nil,所以做 err ≠ nil 的比较时结果就是将是 false

问题到这里似乎就告一段落了,但,再仔细想想,就会发现这其中似乎还是漏掉了一环。

如果给一个 interface 类型的变量赋值时,会同时改变它的类型 T 和值 V,那跟 nil 比较时为什么不是跟它的新类型对应的 nil 比较呢?

事实上,interface 变量跟普通变量确实有一定区别,一个非空接口 interface (即接口中存在函数方法)初始化的底层数据结构是 iface,一个空接口变量对应的底层结构体为 eface

type iface struct {
tab *itab
data unsafe.Pointer
} type eface struct {
_type *_type
data unsafe.Pointer
}

tab 中存放的是类型、方法等信息。data 指针指向的 iface 绑定对象的原始数据的副本。

再来看一下 itab 的结构:

// layout of Itab known to compilers
// allocated in non-garbage-collected memory
// Needs to be in sync with
// ../cmd/compile/internal/reflectdata/reflect.go:/^func.WriteTabs.
type itab struct {
inter *interfacetype
_type *_type
hash uint32 // copy of _type.hash. Used for type switches.
_ [4]byte // 用于内存对齐
fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter.
}

itab 中一共包含 5 个字段,inner 字段存的是初始化 interface 时的静态类型。_type 存的是 interface 对应具体对象的类型,当 interface 变量被赋值后,这个字段便会变成被赋值的对象的类型。

itab 中的 _typeiface 中的 data 便分别对应 interface 变量的 TV_type 是这个变量对应的类型,data 是这个变量的值。在之前的赋值测试中,通过 reflect.TypeOfreflect.ValueOf 方法获取到的信息也分别来自这两个字段。

这里的 hash 字段和 _type 中存的 hash 字段是完全一致的,这么做的目的是为了类型断言。

fun 是一个函数指针,它指向的是具体类型的函数方法,在这个指针对应内存地址的后面依次存储了多个方法,利用指针偏移便可以找到它们。

再来看看 interfacetype 的结构:

type interfacetype struct {
typ _type
pkgpath name
mhdr []imethod
}

这其中也有一个 _type 字段,来表示 interface 变量的初始类型。

看到这里,之前的疑问便开始清晰起来,一个 interface 变量实际上有两个类型,一个是初始化时赋值时对应的 interface 类型,一个是赋值具体对象时,对象的实际类型。

了解了这些之后,我们再来看一下之前的例子:

txn, err := startTx()

这里先对 err 进行初始化赋值,此时,它的 itab.inter.typ 对应的类型信息就是 error itab._type 仍为 nil

err = txn.doUpdate()

当对 err 进行重新赋值时,erritab._type 字段会被赋值成 *CustomizedError ,所以此时,err 变量实际上是一个 itab.inter.typerror ,但实际类型为 *CustomizedError ,值为 nil 的接口变量。

把一个具体类型变量与 nil 比较时,只需要判断其 value 是否为 nil 即可,而把一个接口类型的变量与 nil 进行比较时,还需要判断其类型 itab._type 是否为nil

如果想实际看看被赋值后 err 对应的 iface 结构,可以把 iface 相关的结构体都复制到同一个包下,然后通过 unsafe.Pointer 进行类型强转,就可以通过打断点的方式来查看了。

func TestErr(t *testing.T) {
txn, err := startTx()
fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err))
if err != nil {
log.Fatalf("err starting tx: %v", err)
} p := (*iface)(unsafe.Pointer(&err))
fmt.Println(p.data) if err = txn.doUpdate(); err != nil {
fmt.Println(reflect.TypeOf(err), reflect.ValueOf(err))
p := (*iface)(unsafe.Pointer(&err))
fmt.Println(p.data)
log.Fatalf("err updating: %v", err)
} if err = txn.commit(); err != nil {
log.Fatalf("err committing: %v", err)
}
fmt.Println("success!")
}

补充说明一下,这里的inter.typ.kind 表示的是变量的基本类型,其值对应 runtime 包下的枚举。

const (
kindBool = 1 + iota
kindInt
kindInt8
kindInt16
kindInt32
kindInt64
kindUint
kindUint8
kindUint16
kindUint32
kindUint64
kindUintptr
kindFloat32
kindFloat64
kindComplex64
kindComplex128
kindArray
kindChan
kindFunc
kindInterface
kindMap
kindPtr
kindSlice
kindString
kindStruct
kindUnsafePointer kindDirectIface = 1 << 5
kindGCProg = 1 << 6
kindMask = (1 << 5) - 1
)

比如上图中所示的 kind = 20 对应的类型就是 kindInterface

总结

  1. 接口类型变量跟普通变量是有差异的,非空接口类型变量对应的底层结构是 iface ,空接口类型类型变量对应的底层结构是 eface
  2. iface 中有两个跟类型相关的字段,一个表示的是接口的类型 inter,一个表示的是变量实际类型 _type
  3. 只有当接口变量的 itab._type 与 data 都为 nil 时,也就是实际类型和值都未被赋值前,才真正等于 nil

到此,一个有趣的探索之旅就结束了,但长路漫漫,前方还有无数的问题等待我们去探索和发现,这便是学习的乐趣,希望能与君共勉。

[Go疑难杂症]为什么nil不等于nil的更多相关文章

  1. Swift不等于nil

    我照着书上的例子写下了如下代码,运行后发现提示Nil cannot be assigned to type 'Int' if i!=nil {//Nil cannot be assigned to t ...

  2. Delphi中,FALSE 和 nil ,true 和 nil,0的区别

    True和False是布尔型(Boolean)的值,就是"是"或"否"的意思.nil就是空,一般用于指针或对象变量,指对针或对象对象一般初始化为nil或者释放后 ...

  3. Go中error类型的nil值和nil

    https://my.oschina.net/chai2010/blog/117923

  4. 【Go】深入剖析slice和array

    文章来源:https://blog.thinkeridea.com/201901/go/shen_ru_pou_xi_slice_he_array.html array 和 slice 看似相似,却有 ...

  5. nil/Nil/NULL/NSNull

    nil/Nil/NULL/NSNull的区别 一个简单的小例子: NSObject *obj = nil; NSLog(@"%@",obj); =>null NSObject ...

  6. [转]理解Go语言中的nil

    最近在油管上面看了一个视频:Understanding nil,挺有意思,这篇文章就对视频做一个归纳总结,代码示例都是来自于视频. nil是什么 相信写过Golang的程序员对下面一段代码是非常非常熟 ...

  7. [Go] 理解 golang 中的 nil

    nil是什么 相信写过Golang的程序员对下面一段代码是非常非常熟悉的了: if err != nil { // do something.... } 当出现不等于nil的时候,说明出现某些错误了, ...

  8. golang interface判断为空nil

    要判断interface 空的问题,首先看下其底层实现. interface 底层结构 根据 interface 是否包含有 method,底层实现上用两种 struct 来表示:iface 和 ef ...

  9. goalng nil interface浅析

    0.遇到一个问题 代码 func GetMap (i interface{})(map[string]interface{}){ if i == nil { //false ??? i = make( ...

随机推荐

  1. Docker 08 部署Elasticsearch

    参考源 https://www.bilibili.com/video/BV1og4y1q7M4?spm_id_from=333.999.0.0 https://www.bilibili.com/vid ...

  2. 使用 Vue.js 框架后的感想

    前言 用 Vue 已经有段时间了,把自己的所想所悟写下来,每一个想法都是非常宝贵的,记录成为生活,记录成为习惯. 简化开发 Vue 是可以辅助前端工程师开发 Web App 的一种框架,它节省很多时间 ...

  3. 调用 StatefulWidget 组件的参数时(widget.xxx)报 Invalid Constant Value

    一个 Flutter 组件(Widget)在很多情况下都需要接收一些参数.Flutter 插件通常提示使用 const 关键字包裹某 Widget(很多人接受建议且执行),导致通过 widget.xx ...

  4. Flutter 开启 Windows、macOS 平台支持的命令

    Flutter 的多平台支持除了 Android 和 iOS 是默认开启的以外,比如 Windows.Linux 平台的支持需要手动开启. Flutter config 命令集中,有以下参数是对于平台 ...

  5. 从C过渡到C++——换一个视角深入数组[初始化](1)

    从C过渡到C++--换一个视角深入数组[初始化](1) 目录 从C过渡到C++--换一个视角深入数组[初始化](1) 数组的初始化 从C入手 作用域 代码块作用域 文件作用域 原型作用域 函数作用域 ...

  6. CodeForces - 1701C

    Problem - C - Codeforces 题意: 每个位置对应一种适合的工人,适合的工人工作消耗1h,不适合2h,每个工人不能同时工作多个机器,问将所有机器工作完毕的最小时间是多少. 题解: ...

  7. yield功能分析

    下面是示例 输出结果: starting... 4 ******************** res: None 4

  8. 关于Ubuntu系统无法输入中文的问题,即使做了种种修改

    原网址:https://shurufa.sogou.com/linux/guide 在经历一晚上一及一下午的奋战后,找到了最终解决方案,该解决方案使用的是搜狗输入法 在操作之前有以下注意事项:所有操作 ...

  9. 配置联想IMM使用AD账户登录

    IMM是联想(IBM)服务器的管理卡Integrated Management Module的缩写,现在是第二个版本.通过它可以远程管理服务器,就像你在服务器面前操作一样.可以修改BIOS设置,可以重 ...

  10. Openstack Neutron:二层技术和实现

    目录 - 二层的实现 - 1.本地联通与隔离: - Linux bridge实现方式: - local - Flat - VLAN - VXLAN - Open vswitch实现方式 - local ...