【SPOJ】Substrings
出现次数很好处理,就是 \(right/endpos\) 集合的大小
那么,直接构建 \(SAM\)
求出每个位置的\(right\)集合大小
直接更新每个节点的\(longest\)就行了
最后短的可以由长的更新过来就好
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 2001000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
char ch[MAX];
struct Node
{
int son[26];
int ff,len;
}t[MAX<<1];
int size[MAX];
int tot=1,last=1,c[MAX],a[MAX],ans[MAX];
void extend(int c)
{
int p=last,np=++tot;last=np;
t[np].len=t[p].len+1;
while(p&&!t[p].son[c])t[p].son[c]=np,p=t[p].ff;
if(!p)t[np].ff=1;
else
{
int q=t[p].son[c];
if(t[q].len==t[p].len+1)t[np].ff=q;
else
{
int nq=++tot;
t[nq]=t[q];
t[nq].len=t[p].len+1;
t[q].ff=t[np].ff=nq;
while(p&&t[p].son[c]==q)t[p].son[c]=nq,p=t[p].ff;
}
}
size[np]=1;
}
int main()
{
scanf("%s",ch+1);
int l=strlen(ch+1);
for(int i=1;i<=l;++i)extend(ch[i]-97);
for(int i=1;i<=tot;++i)c[t[i].len]++;
for(int i=1;i<=tot;++i)c[i]+=c[i-1];
for(int i=1;i<=tot;++i)a[c[t[i].len]--]=i;
for(int i=tot;i;--i)
{
int u=a[i];
size[t[u].ff]+=size[u];
ans[t[u].len]=max(ans[t[u].len],size[u]);
}
for(int i=l-1;i;--i)ans[i]=max(ans[i],ans[i+1]);
for(int i=1;i<=l;++i)printf("%d\n",ans[i]);
return 0;
}
【SPOJ】Substrings的更多相关文章
- 【SPOJ】Substrings(后缀自动机)
[SPOJ]Substrings(后缀自动机) 题面 Vjudge 题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次 题解 出现次数很好处理,就是\(rig ...
- 【SPOJ】Distinct Substrings(后缀自动机)
[SPOJ]Distinct Substrings(后缀自动机) 题面 Vjudge 题意:求一个串的不同子串的数量 题解 对于这个串构建后缀自动机之后 我们知道每个串出现的次数就是\(right/e ...
- 【SPOJ】Distinct Substrings/New Distinct Substrings(后缀数组)
[SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题 ...
- 【SPOJ】Distinct Substrings
[SPOJ]Distinct Substrings 求不同子串数量 统计每个点有效的字符串数量(第一次出现的) \(\sum\limits_{now=1}^{nod}now.longest-paren ...
- 【SPOJ】NUMOFPAL - Number of Palindromes(Manacher,回文树)
[SPOJ]NUMOFPAL - Number of Palindromes(Manacher,回文树) 题面 洛谷 求一个串中包含几个回文串 题解 Manacher傻逼题 只是用回文树写写而已.. ...
- 【SPOJ】Longest Common Substring II (后缀自动机)
[SPOJ]Longest Common Substring II (后缀自动机) 题面 Vjudge 题意:求若干个串的最长公共子串 题解 对于某一个串构建\(SAM\) 每个串依次进行匹配 同时记 ...
- 【SPOJ】Longest Common Substring(后缀自动机)
[SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另 ...
- 【SPOJ】Power Modulo Inverted(拓展BSGS)
[SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #inc ...
- 【SPOJ】QTREE7(Link-Cut Tree)
[SPOJ]QTREE7(Link-Cut Tree) 题面 洛谷 Vjudge 题解 和QTREE6的本质是一样的:维护同色联通块 那么,QTREE6同理,对于两种颜色分别维护一棵\(LCT\) 每 ...
随机推荐
- tkinter之对话框
对话框的一个例子: from tkinter.dialog import * from tkinter import * def investigation(): d=Dialog(None,titl ...
- listen 63
Danger Explainers Convince Kids Better Than Do Edict Issuers An eight-year-old may view a hammer as ...
- [算法]Trie树
我是好文章的搬运工,原文来自博客园,博主一线码农,选自”6天通吃树结构“系列,地址:http://www.cnblogs.com/huangxincheng/archive/2012/11/25/27 ...
- zero to one (4)
复盘--天下武功唯快不破 There is no martial art is indefectible, while the fastest speed is the only way for lo ...
- SqL注入攻击实践
研究缓冲区溢出的原理,至少针对两种数据库进行差异化研究 缓冲区溢出原理 缓冲区溢出是指当计算机程序向缓冲区内填充的数据位数超过了缓冲区本身的容量.溢出的数据覆盖在合法数据上.理想情况是,程序检查数据长 ...
- C# Unit Test 备注
1. UT工程的编译一定要让依赖的dll在同一目录,即和测试目标dll运行的环境一样. 比如 Demo-UT测试Demo工程, 则Demo工程依赖的所有dll必须和Demo输出的可执行环境Demo.d ...
- C# 线程的暂停和恢复的 实现
我们可以通过ManualResetEvent类来实现. 声明, 初始化时不执行 private static ManualResetEvent _eventWorkList = new ManualR ...
- 资源:template
ylbtech-资源: 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 6.返回顶部 作者:ylbtech出处:http://ylbtech.cnbl ...
- 使用外网控制你的STM32单片机
转自:http://blog.csdn.net/xdxlove/article/details/50837459 本文章假设读者已经在STM32单片机上成功移植LWIP,且已经实现在局域网内控制STM ...
- MVC 模式介绍(1)
MVC 模式 MVC 模式代表 Model-View-Controller(模型-视图-控制器) 模式.这种模式用于应用程序的分层开发. Model(模型) - 模型代表一个存取数据的对象或 JAVA ...