反向操作,先把所有的标记都打上(记得统计标记的数目),然后依次撤销,合并到自己的上一个点pre,即fa[u]=getf(pre[u])

#include<cstdio>
#include<iostream>
#define R register int
using namespace std;
const int N=;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int n,k,cnt;
int vr[N<<],nxt[N<<],fir[N],fa[N],pre[N],c[N],ans[N],s[N];
char ch[N];
inline void add(int u,int v) {vr[++cnt]=v,nxt[cnt]=fir[u],fir[u]=cnt;}
int getf(int x) {return x==fa[x]?x:fa[x]=getf(fa[x]);}
void dfs(int u,int f) { bool flg=true;
if(!fa[u]) fa[u]=f,flg=false;
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(pre[v]) continue; pre[v]=u;
if(flg) dfs(v,u);
else dfs(v,f);
}
}
signed main() {
n=g(),k=g();
for(R i=,u,v;i<n;++i) u=g(),v=g(),add(u,v),add(v,u);
for(R i=;i<=k;++i) {
while(!isalpha(ch[i]=getchar())); c[i]=g();
if(ch[i]=='C') fa[c[i]]=c[i],++s[c[i]];
} fa[]=; pre[]=;
dfs(,); cnt=;
for(R i=k;i>=;--i) {
if(ch[i]=='C'&&!(--s[c[i]])) fa[c[i]]=getf(pre[c[i]]);
else if(ch[i]=='Q')ans[++cnt]=getf(c[i]);
} for(R i=cnt;i>=;--i) printf("%d\n",ans[i]);
}

2019.04.16

BZOJ 4551: [Tjoi2016&Heoi2016]树 并查集(&&图论?)的更多相关文章

  1. BZOJ 4551 [Tjoi2016&Heoi2016]树 ——并查集

    树剖显然可以做. 然而有一种更神奇的方法,并查集+时光倒流. 每个节点指向它上面最近的标记节点,标记节点指向自己,然后删除标记,就可以用并查集查询了. #include <map> #in ...

  2. BZOJ 4551: [Tjoi2016&Heoi2016]树

    4551: [Tjoi2016&Heoi2016]树 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 748  Solved: 394[Subm ...

  3. [BZOJ4551][TJOI2016&&HEOI2016]树(并查集)

    4551: [Tjoi2016&Heoi2016]树 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1746  Solved: 800[Sub ...

  4. 【BZOJ4551】[Tjoi2016&Heoi2016]树 并查集

    [BZOJ4551][Tjoi2016&Heoi2016]树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下两 ...

  5. bzoj 4551: [Tjoi2016&Heoi2016]树【并查集】

    看起来像是并查集,但是是拆集合,考虑时间倒流,先把标记都打上,然后把并查集做出来 每次到一个修改点就把这个点的计数s[u]--,当这个s为0时就把这个点和他的父亲合并(因为可能有多次标记) #incl ...

  6. BZOJ 4551[Tjoi2016&Heoi2016]树(树链剖分+二分)

    Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记 ...

  7. BZOJ 1453 (线段树+并查集)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1453 题意:一个 n*n 的矩阵,每个位置有黑/白两种颜色,有 m 次操作,每次可以翻转 ...

  8. BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树

    BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为 ...

  9. BZOJ.2054.疯狂的馒头(并查集)

    BZOJ 倒序处理,就是并查集傻题了.. 并查集就是确定下一个未染色位置的,直接跳到那个位置染.然而我越想越麻烦=-= 以为有线性的做法,发现还是要并查集.. 数据随机线段树也能过去. //18400 ...

随机推荐

  1. ubuntu 14.4 下 普通sudo无密码

    用户是test,要设置为 sudo无密码 visudo 最后一行 加上: %test  ALL=NOPASSWD:ALL 然后  ctrl + x 进行保存,会提示 Y or  N,输入 y 即可. ...

  2. swoole的http服务

    PHP实现基于Swoole简单的HTTP服务器 引用Swoole官方定义: PHP语言的异步.并行.高性能网络通信框架,使用纯C语言编写,提供了PHP语言的异步多线程服务器,异步TCP/UDP网络客户 ...

  3. 文章预告的自我挖坑系列——D3.js 系列之星光闪烁

    D3.js 是个神奇的工具,下面收集了一些与星星相关的可视化的例子,静待慢慢的把坑填上 雷达图http://bl.ocks.org/kevinschaul/8213691      星空 二维(一)h ...

  4. highcharts 图例全选按钮方法

    $('#uncheckAll').click(function(){ var chart = $('#container').highcharts(); var series = chart.seri ...

  5. JXL 的API

    使用Windows操作系统的朋友对Excel(电子表格)一定不会陌生,但是要使用Java语言来操纵Excel文件并不是一件容易的事.在Web应用日益盛行的今天,通过Web来操作Excel文件的需求越来 ...

  6. BZOJ_3165_[Heoi2013]Segment_线段树

    BZOJ_3165_[Heoi2013]Segment_线段树 Description 要求在平面直角坐标系下维护两个操作: 1.在平面上加入一条线段.记第i条被插入的线段的标号为i. 2.给定一个数 ...

  7. ACM学习历程——UVA10112 Myacm Triangles(计算几何,多边形与点的包含关系)

    Description   Problem B: Myacm Triangles Problem B: Myacm Triangles Source file: triangle.{c, cpp, j ...

  8. js 图片上传

    可能很多不熟悉的图片上传的同学会觉得有点懵,其实做过一次你就会发现特别的简单. 只是一个formData格式的表单提交,把地址写到 action = "" 里面就可以了,当然你可以 ...

  9. C++与UnrealScript脚本交互

    转自:http://m.blog.csdn.net/blog/qweewqpkn/39932499 一.c++调用uc脚本中的函数 举例: 1. 在脚本MenuManager.uc文件中实现函数: e ...

  10. jQuery contextMenu使用

    地址:jQuery contextMenu 需要以下文件: jquery.contextMenu.css jquery.min.css jquery.contextMenu.js jquery.ui. ...