反向操作,先把所有的标记都打上(记得统计标记的数目),然后依次撤销,合并到自己的上一个点pre,即fa[u]=getf(pre[u])

#include<cstdio>
#include<iostream>
#define R register int
using namespace std;
const int N=;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int n,k,cnt;
int vr[N<<],nxt[N<<],fir[N],fa[N],pre[N],c[N],ans[N],s[N];
char ch[N];
inline void add(int u,int v) {vr[++cnt]=v,nxt[cnt]=fir[u],fir[u]=cnt;}
int getf(int x) {return x==fa[x]?x:fa[x]=getf(fa[x]);}
void dfs(int u,int f) { bool flg=true;
if(!fa[u]) fa[u]=f,flg=false;
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(pre[v]) continue; pre[v]=u;
if(flg) dfs(v,u);
else dfs(v,f);
}
}
signed main() {
n=g(),k=g();
for(R i=,u,v;i<n;++i) u=g(),v=g(),add(u,v),add(v,u);
for(R i=;i<=k;++i) {
while(!isalpha(ch[i]=getchar())); c[i]=g();
if(ch[i]=='C') fa[c[i]]=c[i],++s[c[i]];
} fa[]=; pre[]=;
dfs(,); cnt=;
for(R i=k;i>=;--i) {
if(ch[i]=='C'&&!(--s[c[i]])) fa[c[i]]=getf(pre[c[i]]);
else if(ch[i]=='Q')ans[++cnt]=getf(c[i]);
} for(R i=cnt;i>=;--i) printf("%d\n",ans[i]);
}

2019.04.16

BZOJ 4551: [Tjoi2016&Heoi2016]树 并查集(&&图论?)的更多相关文章

  1. BZOJ 4551 [Tjoi2016&Heoi2016]树 ——并查集

    树剖显然可以做. 然而有一种更神奇的方法,并查集+时光倒流. 每个节点指向它上面最近的标记节点,标记节点指向自己,然后删除标记,就可以用并查集查询了. #include <map> #in ...

  2. BZOJ 4551: [Tjoi2016&Heoi2016]树

    4551: [Tjoi2016&Heoi2016]树 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 748  Solved: 394[Subm ...

  3. [BZOJ4551][TJOI2016&&HEOI2016]树(并查集)

    4551: [Tjoi2016&Heoi2016]树 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1746  Solved: 800[Sub ...

  4. 【BZOJ4551】[Tjoi2016&Heoi2016]树 并查集

    [BZOJ4551][Tjoi2016&Heoi2016]树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下两 ...

  5. bzoj 4551: [Tjoi2016&Heoi2016]树【并查集】

    看起来像是并查集,但是是拆集合,考虑时间倒流,先把标记都打上,然后把并查集做出来 每次到一个修改点就把这个点的计数s[u]--,当这个s为0时就把这个点和他的父亲合并(因为可能有多次标记) #incl ...

  6. BZOJ 4551[Tjoi2016&Heoi2016]树(树链剖分+二分)

    Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记 ...

  7. BZOJ 1453 (线段树+并查集)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1453 题意:一个 n*n 的矩阵,每个位置有黑/白两种颜色,有 m 次操作,每次可以翻转 ...

  8. BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树

    BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为 ...

  9. BZOJ.2054.疯狂的馒头(并查集)

    BZOJ 倒序处理,就是并查集傻题了.. 并查集就是确定下一个未染色位置的,直接跳到那个位置染.然而我越想越麻烦=-= 以为有线性的做法,发现还是要并查集.. 数据随机线段树也能过去. //18400 ...

随机推荐

  1. Hadoop- MapReduce分布式计算框架原理

    分布式计算: 原则:移动计算而尽可能减少移动数据(减少网络开销) 分布式计算其实就是将单台机器上的计算拓展到多台机器上并行计算. MapReduce是一种编程模型.Hadoop MapReduce采用 ...

  2. OpenCV——花环生成函数

    // define head function #ifndef PS_ALGORITHM_H_INCLUDED #define PS_ALGORITHM_H_INCLUDED #include < ...

  3. BZOJ2877:[NOI2012]魔幻棋盘

    浅谈树状数组与主席树:https://www.cnblogs.com/AKMer/p/9946944.html 题目传送门:https://lydsy.com/JudgeOnline/problem. ...

  4. 洛谷 P4512 [模板] 多项式除法

    题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html htt ...

  5. wpf如何获取control template里的元素

    wpf中的控件模板里的元素有自己独立的命名域. 因此不能通过FindName来根据x:Name来查找子节点. 自己写了一个方法, 通过可视树遍历子节点,然后匹配名字. 如下: private stat ...

  6. node.js setup wizard ended prematurely Win7安装nodejs失败解决方法

    笔记本win7在nodejs官方网站下载.msi文件安装,安装到一半的时候,进度条提示:roll back,because of a error.node.JS setup wizard ended ...

  7. IOS要用到的零碎东西

    有些东西虽然不重要,但是零零碎碎会用到,就做个笔录吧: 协议中有2个关键字可以控制方法是否要实现(默认是@required),在大多数情况下, 用途在于程序员之间的交流 @required:这个方法必 ...

  8. Robot FrameWork基础学习(四) 元素定位

    元素定位 对于web自动化测试来说,就是操作页面的各种元素,在操作元素之间需要先找到元素,换句话说就是定位元素. Selenium2Library提供了非常丰富的定位器: 虽然提供了这么多种定位方式, ...

  9. POJ-3069

    Saruman's Army Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10994   Accepted: 5555 D ...

  10. 《Java多线程编程核心技术》读后感(十五)

    线程的状态 线程对象在不同的运行时期有不同的状态,状态信息就存在与State枚举类中. 验证New,Runnable,Terminated new:线程实例化后还从未执行start()方法时的状态 r ...