1497: [NOI2006]最大获利

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 4572  Solved: 2239
[Submit][Status][Discuss]

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

Sample Output

4

HINT

【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

Source

分析:

裸的最大权闭合子图...

把每个中转站看成负权点,顾客群看成正权点,然后每个顾客向中转站连边...

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define inf 0x3f3f3f3f
using namespace std; const int maxn=+,maxm=+; int n,m,S,T,cnt,sum,hd[maxn],fl[maxm],to[maxm],nxt[maxm],pos[maxn]; inline bool bfs(void){
memset(pos,-,sizeof(pos));
int head=,tail=,q[maxn];
q[]=S,pos[S]=;
while(head<=tail){
int top=q[head++];
for(int i=hd[top];i!=-;i=nxt[i])
if(pos[to[i]]==-&&fl[i])
pos[to[i]]=pos[top]+,q[++tail]=to[i];
}
return pos[T]!=-;
} inline int find(int v,int f){
if(v==T)
return f;
int res=,t;
for(int i=hd[v];i!=-&&f>res;i=nxt[i])
if(pos[to[i]]==pos[v]+&&fl[i])
t=find(to[i],min(f-res,fl[i])),fl[i]-=t,fl[i^]+=t,res+=t;
if(!res)
pos[v]=-;
return res;
} inline int dinic(void){
int res=,t;
while(bfs())
while(t=find(S,inf))
res+=t;
return res;
} inline void add(int s,int x,int y){
fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
fl[cnt]=;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} signed main(void){
scanf("%d%d",&n,&m);T=n+m+;
memset(hd,-,sizeof(hd));S=sum=;
for(int i=,x;i<=n;i++)
scanf("%d",&x),add(x,i,T);
for(int i=,s,x,y;i<=m;i++)
scanf("%d%d%d",&x,&y,&s),add(inf,i+n,x),add(inf,i+n,y),add(s,S,i+n),sum+=s;
printf("%d\n",sum-dinic());
return ;
}//Cap ou pas cap. Cap.

By NeighThorn

BZOJ 1497: [NOI2006]最大获利的更多相关文章

  1. BZOJ 1497: [NOI2006]最大获利 最小割

    1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...

  2. BZOJ 1497: [NOI2006]最大获利( 最大流 )

    下午到周六早上是期末考试...但是我还是坚守在机房....要挂的节奏啊.... 这道题就是网络流 , 建图后就最大流跑啊跑啊跑... --------------------------------- ...

  3. BZOJ 1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MB Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机 ...

  4. BZOJ 1497 [NOI2006]最大获利 ——网络流

    [题目分析] 最大权闭合子图. S到集合1容量为获利的大小,集合2到T为所需要付出的相反数. 然后求出最大流,然后用总的获利相减即可. [代码] #include <cstdio> #in ...

  5. BZOJ 1497: [NOI2006]最大获利(最大权闭合图)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 题意: 思路: 论文题,只要看过论文的话就是小菜一碟啦~ 每个用户群i作为一个结点分别向相应的 ...

  6. BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)

    题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...

  7. bzoj 1497 [NOI2006]最大获利【最大权闭合子图+最小割】

    不要被5s时限和50000点数吓倒!大胆网络流!我一个5w级别的dinic只跑了1s+! 看起来没有最大权闭合子图的特征--限制,实际上还是有的. 我们需要把中转站看成负权点,把p看成点权,把客户看成 ...

  8. 1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 5503  Solved: 2673 Description 新的技 ...

  9. 最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 最大权闭合图详细请看胡伯涛论文<最小割模型在信息学竞赛中的应用>,我在这里截图它的 ...

随机推荐

  1. 30. 与所有单词相关联的字串、java实现

    题目描述: 给定一个字符串 s 和一些长度相同的单词 words.在 s 中找出可以恰好串联 words 中所有单词的子串的起始位置. 注意子串要与 words 中的单词完全匹配,中间不能有其他字符, ...

  2. 谈谈Integer中的静态类IntegerCache

            学习的本质就是一个赋值的过程,用新知识来覆盖你的旧知识或者无知(null).掌握知识是自己的, 分享知识,才能帮助更多的人,创造更大的价值.学贵以恒,以此自勉,与君共享.----曦阳X ...

  3. Python中的set

    set_lst = [ ('集合容器不可哈希',), ('集合中的元素必须可哈希',), ('集合是无序的',), ('集合自动去重',), ('增',), ('删',), ('查',), ('集合运 ...

  4. django之media配置

    一.没有配置Media avatar = models.FileField(upload_to='avatars/', default='/avatars/default.png') # 储存头像的m ...

  5. HDU 5971 二分图判定

    Wrestling Match Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  6. 决策树python实现小样例

    我们经常使用决策树处理分类问题,近年来的调查表明决策树也是经常使用的数据挖掘算法K-NN可以完成多分类任务,但是它最大的缺点是无法给出数据的内在含义,决策树的主要优势在于数据形式非常容易理解决策树的优 ...

  7. Flask With

  8. SXCPC2018 nucoj2005 大闹上兰帝国

    超 dark van♂全背包 ref1 ref2 #include <iostream> #include <cstring> #include <cstdio> ...

  9. C#入门篇6-3:字符串操作 string的ToString() Split()和Copy()方法

    //ToString()方法 public static void OutPut() { //字符型转换 转为字符串 Console.WriteLine(.ToString("n" ...

  10. poj1111(单身快乐)

                                                                                                         ...