神题啊!!

Description

给你一棵有N个节点的树,节点编号为1到N,所有边的长度都为1

"全"对某些节点情有独钟,这些他喜欢的节点的信息会以一个长度为N的字符串s的形式给到你,具体一点就是对于1<=i<=N,si=1表示"全"喜欢节点i,为0表示"全"不喜欢节点i

一开始的时候,所有的节点都是白色的,"全"会进行以下操作恰好一次:

选择一个他喜欢的节点v和一个非负整数d,然后将所有与节点v距离不超过d的节点全部涂黑

问进行操作之后,有多少种不同的涂色情况?两种情况不同当且仅当两种情况存在一个节点i的颜色不同

Input

第一行一个正整数N

接下来N−1行每行两个正整数xi,yi表示xi到yi有一条边

最后一行一个字符串s

Output

输出不同染色情况的数量

题解:

设\(f(i,d)\),为把距 \(i\) 点小于等于 \(d\) 染成黑色的集合。

不过这样染色的时候会有重复的方案,我们考虑下何时会重复。

当 $f(i,d_1) $ 和 \(f(j,d2)\),重复时,当且仅当 \(i\),\(j\) 之间存在一点 \(k\),使得 \(f(k,d1-dist(i,k))\),\(dist(i,j)\) 表示 \(i\),\(j\) 的树上距离。

这个很显然吧……

所以对于某个\(f(i,d)\),如果有\(f(k,d1-dist(i,k))=f(i,d)\),那么 \(f(i,d)\) 就会被重复算。

对于每一个\(i\),我们只用考虑更他相邻的点和他的重复情况就可以了。(也很显然吧)

那我们再考虑一下,何时 \(f(i,d)=f(k,d-1)\)。

还是很显然,如果以 \(k\) 为根,\(i\) 的子树全部被染成黑色的话,他们就相等。

所以可以得知,\(d\) 的上界为 \(i\) 到他子树中的最远点的距离。

那我们用树形dp,\(O(n)\) 算出,然后暴力枚举每个 \(i\),算 \(d\) 的上界。

那下界呢? 如果 \(i\) 点是特殊点,无疑是0,那如果不是呢?

如果不是,那么若存在一个特殊节点j满足方案\((i,d)\)中 \(j\) 所在子树内所有节点均被染成黑色,\((i,d)\) 就是一个合法的染色方案。故我们只需要求出从 \(i\) 出发的至少经过 1 个特殊节点到达 \(j\) 子树中的最远节点的距离的最小值,就是可行的 \(d\) 的最小值。

知道每个 \(i\),\(d\) 的上下界,那就算吧!

CODE:

#include<iostream>
#include<cstdio>
using namespace std; int d1[200005],d2[200005];
int d3[200005],d4[200005];
//d1:子树中的最远距离
//d2:非子树中的最远距离
//d3:这个节点到子树中至少经过1个特殊节点到达子树中的最远节点最小距离
//d4:从他父亲出发,不经过这棵子树的最远路径
int n,x,y,siz[200005],col[200005],fa[200005];
long long ans=0;
int tot=0,h[200005];
struct Edge{
int x,next;
}e[400005];
char ch[200005]; inline void add_edge(int x,int y){
e[++tot].x=y;
e[tot].next=h[x],h[x]=tot;
} void dfs1(int x,int father){
siz[x]=col[x],fa[x]=father;
d3[x]=col[x]?0:1e9;
for(int i=h[x];i;i=e[i].next){
if(e[i].x==father)continue;
dfs1(e[i].x,x);
siz[x]+=siz[e[i].x];
d1[x]=max(d1[x],d1[e[i].x]+1);
if(siz[e[i].x])
d3[x]=min(d3[x],d1[e[i].x]+1);
}
} void dfs2(int x,int father){
if(father)d4[x]=d2[x]-1;
int maxn=0,sec=0;
for(int i=h[x];i;i=e[i].next){
if(e[i].x==father)continue;
if(d1[e[i].x]+1>maxn)
sec=maxn,maxn=d1[e[i].x]+1;
else sec=max(sec,d1[e[i].x]+1);
}
for(int i=h[x];i;i=e[i].next){
if(e[i].x==father)continue;
if(d1[e[i].x]+1==maxn)
d2[e[i].x]=max(d2[x],sec)+1;
else d2[e[i].x]=max(d2[x],maxn)+1;
dfs2(e[i].x,x);
}
} int main(){
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d%d",&x,&y);
add_edge(x,y);
add_edge(y,x);
}
scanf("%s",ch+1);
for(int i=1;ch[i];i++)
col[i]=ch[i]-'0';
dfs1(1,0),dfs2(1,0);
for(int i=1;i<=n;i++){
int minv,maxv;
minv=min(d3[i],siz[1]==siz[i]?(int)1e9:d2[i]);
maxv=max(d1[i],d2[i])-1;
for(int j=h[i];j;j=e[j].next){
if(e[j].x==fa[i])maxv=min(maxv,d1[i]+1);
else maxv=min(maxv,d4[e[j].x]+1);
}
if(maxv>=minv)ans+=1LL*maxv-minv+1;
}
printf("%lld",ans+1);
}

[AGC008F] Black Radius(树形dp)的更多相关文章

  1. [agc008f] Black Radius 树形dp

    Description ​ 给你一棵有NN个节点的树,节点编号为11到NN,所有边的长度都为11 ​ "全"对某些节点情有独钟,这些他喜欢的节点的信息会以一个长度为NN的字符串ss ...

  2. [Agc008F]Black Radius

    [AGC008F] Black Radius Description 给你一棵有N个节点的树,节点编号为1到N,所有边的长度都为1 "全"对某些节点情有独钟,这些他喜欢的节点的信息 ...

  3. 2017国家集训队作业[agc008f]Black Radius

    2017国家集训队作业[agc008f]Black Radius 时隔4个月,经历了省赛打酱油和中考各种被吊打后,我终于回想起了我博客园的密码= = 题意: ​ 给你一棵树,树上有若干个关键点.选中某 ...

  4. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  5. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  6. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  7. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  8. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  9. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

随机推荐

  1. 在React中使用Redux数据流

    问题:数据流是什么呢?为什么要用数据流? 答案:1.数据流是我们的行为与相应的抽象 2.使用数据流帮助我们明确了行为的对应的响应 问题: React与数据流的关系 1.React是纯 V 层的前端框架 ...

  2. 牛客小白月赛1 G あなたの蛙は旅⽴っています【图存储】【DP】

    题目链接:https://www.nowcoder.com/acm/contest/85/G 思路: DP 空间可以优化成一维的, 用一维数组的 0 号单元保存左斜对角的值即可. 存图这里真不好理解 ...

  3. css分层,实现遮罩底层弹出新窗口里可以操作,最下层能看到单不能操作

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. POI Excel 插入新的行,下面的行动态移动

    在做Excel 模板时,会有遇到  模板行数不固定,如下图  需要在行次4下面再插入一行:注意:(插入的行如果是下面空白行,需要创建行) 解决方法是使用shifRows方法,第1个参数是指要开始插入的 ...

  5. input type=file输入框

    <div class="row"> <!--选择图片按钮--> <div class="col-xs-12" align=&quo ...

  6. 【bzoj3339】Rmq Problem

    [bzoj3339]Rmq Problem   Description Input Output Sample Input 7 50 2 1 0 1 3 21 32 31 43 62 7 Sample ...

  7. 洛谷P1079 Vigenère 密码

    题目链接:https://www.luogu.org/problemnew/show/P1079

  8. netcfg.exe

    netcfg.exe 编辑 本词条缺少信息栏.名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!   目录 1 简介 2 可能出现问题 简介编辑 netcfg.exe是Kaspersky的 ...

  9. 怎么使用瓦特平台下面的“代码工厂”快速生成BS程序代码

    这里说一下怎么使用瓦特平台下面的“代码工厂”快速生成程序代码 使用平台:windows+"visual studio 2010"+"SqlServer2000+" ...

  10. Python框架之Django学习笔记(四)

    第一个基于Django的页面:Hello World 正如我们的第一个目标,创建一个网页,用来输出这个著名的示例信息:Hello world. 第一个视图 Hello world视图非常简单. 这些是 ...