题目链接

BZOJ1487

题解

就是一个简单的仙人掌最大权独立集

还是不会圆方树

老老实实地树形Dp + 环处理

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 400005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],ne = 2;
struct EDGE{int to,nxt;}ed[maxm];
inline void build(int u,int v){
ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v]}; h[v] = ne++;
}
int n,m,f[maxn][2],val[maxn],dfn[maxn],low[maxn],fa[maxn],cnt;
int c[maxn],ci,g[maxn][2];
void DP(int rt,int u){
ci = 0;
for (int i = u; i != rt; i = fa[i]) c[++ci] = i;
//printf("%d ",rt);
//REP(i,ci) printf("%d ",c[i]); puts("");
//not choose rt
g[1][0] = f[c[1]][0]; g[1][1] = f[c[1]][1];
for (int i = 2; i <= ci; i++){
g[i][0] = max(g[i - 1][0],g[i - 1][1]) + f[c[i]][0];
g[i][1] = g[i - 1][0] + f[c[i]][1];
}
f[rt][0] += max(g[ci][0],g[ci][1]);
//choose rt
g[1][0] = f[c[1]][0]; g[1][1] = -INF;
for (int i = 2; i <= ci; i++){
g[i][0] = max(g[i - 1][0],g[i - 1][1]) + f[c[i]][0];
g[i][1] = g[i - 1][0] + f[c[i]][1];
}
f[rt][1] += g[ci][0];
}
void dfs(int u){
dfn[u] = low[u] = ++cnt; f[u][1] = val[u];
Redge(u) if ((to = ed[k].to) != fa[u]){
if (!dfn[to]){
fa[to] = u; dfs(to);
low[u] = min(low[u],low[to]);
}
else low[u] = min(low[u],dfn[to]);
if (low[to] > dfn[u]){
f[u][0] += max(f[to][0],f[to][1]);
f[u][1] += f[to][0];
}
}
Redge(u) if (fa[to = ed[k].to] != u && dfn[u] < dfn[to])
DP(u,to);
}
int main(){
n = read(); m = read();
while (m--) build(read(),read());
REP(i,n) val[i] = read();
int ans = 0;
REP(i,n) if (!dfn[i]){
dfs(i);
ans += max(f[i][0],f[i][1]);
}
printf("%d\n",ans);
return 0;
}

BZOJ1487 [HNOI2009]无归岛 【仙人掌dp】的更多相关文章

  1. bzoj1487 [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛 上的任意两个生物,他们有且仅有 ...

  2. 2019.02.07 bzoj1487: [HNOI2009]无归岛(仙人掌+树形dp)

    传送门 人脑转化条件过后的题意简述:给你一个仙人掌求最大带权独立集. 思路:跟这题没啥变化好吗?再写一遍加深记忆吧. 就是把每个环提出来分别枚举环在图中的最高点选还是不选分别dpdpdp一下即可,时间 ...

  3. 【BZOJ1487】[HNOI2009]无归岛(动态规划)

    [BZOJ1487][HNOI2009]无归岛(动态规划) 题面 BZOJ 洛谷 题解 哪来的这么多废话啊,直接说一个仙人掌得了. 然后就是要你求仙人掌最大独立集了.(随便蒯份原来的代码就过了) 不过 ...

  4. P4410 [HNOI2009]无归岛

    P4410 [HNOI2009]无归岛 显然这还是一个仙人掌图 对于同一个岛上的任意两个生物,他们有且仅有一个公共朋友 要求求最大独立集,和树形dp一样,遇到环时单独提出来处理一下就好了 #inclu ...

  5. 【BZOJ1487】[HNOI2009]无归岛(仙人掌 DP)

    题目: BZOJ1487 分析: 题目中给定的图一定是一棵仙人掌(每条边最多属于一个环),证明如下: 先考虑单独一个岛的情况.第一,一个岛一定是一张「弦图」,即任意一个大小超过 3 的环都至少有 1 ...

  6. 【刷题】BZOJ 1487 [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...

  7. [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...

  8. 【题解】HNOI2009无归岛

    这题真的是无语了,在哪个岛上根本就没有任何的用处……不过我是画了下图,感受到一定是仙人掌,并不会证.有谁会证的求解…… 如果当做仙人掌来做确实十分的简单.只要像没有上司的舞会一样树形dp就好了,遇到环 ...

  9. Luogu-4410 [HNOI2009]无归岛

    裸的仙人掌最大独立子集,结果一个zz的错误让我调了好久... \(-inf\)开始设为\(0x7fffffff\)结果\(A_i\)有负数一加就炸了 #include<cstdio> #i ...

随机推荐

  1. javaweb基础(29)_EL表达式

    一.EL表达式简介 EL 全名为Expression Language.EL主要作用: 1.获取数据 EL表达式主要用于替换JSP页面中的脚本表达式,以从各种类型的web域 中检索java对象.获取数 ...

  2. WPF中对XML的读写

    XML(可扩展标记语言) 定义:用于标记电子文件使其具有结构性的标记语言,可以用来标记数据.定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言. 写操作: XmlTextWriter wri ...

  3. 架构图(拓扑图)画图工具分析整理(静态,动态,可交互图.层级tu)

    最近要画架构图. 一方面有图片洁癖,另外一方面又不想不停的挪动图片. 一开始想用脑图软件. 发现脑图是树状的,架构模块依赖图是网状的.(也可以简化为层级图,不画交互关系.类似 dubbo 的架构图. ...

  4. c++ bitset 10进制转二进制

    #include <bitset> using namespace std; void main() { int a; cin>>a; cout<<bitset&l ...

  5. 洛谷P1164小A点菜

    这也是一道01背包的题 用的方法比较的巧妙.这个动态规划相当于反过来做的,自己理解就知道了.代码很短 #include<bits/stdc++.h> using namespace std ...

  6. MySQL - FIND_IN_SET 函数使用方法

    SELECT * FROM xxxTableName x WHERE FIND_IN_SET(x.id, '1,2,3,4,5,6,7,8');   如上查询,意为:xxxTableName 表中 x ...

  7. mysql--连接查询(内外连接)

    连接查询又称多表查询,查询到的字段来自于多个表中的数据. 一. 连接查询的分类和语法 1.分类 按标准分: 92标准:只支持内连接 99标准:支持内连接和.外连接和全外连接 功能进行分类: 内连接:i ...

  8. Python_三级目录

    程序要求: 1. 使用字典存储 1. 可以一层一层的进入到所有层2. 可以在每层返回上一层3. 可以在任意层退出 三级目录写了两个版本,第一个版本是刚看完字典写出来的,代码很多冗余,很多重复. men ...

  9. 使用Navicat连接阿里云ECS服务器上的MySQL数据库

    一.首先要mysql授权 mysql>GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY '你的mysql数据库密码' WITH GR ...

  10. Java开发学生管理系统

    Java 学生管理系统 使用JDBC了链接本地MySQL 数据库,因此在没有建立好数据库的情况下没法成功运行 (数据库部分, Java界面部分, JDBC部分) 资源下载: http://downlo ...