Description

There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.

Input

Input starts with an integer T (≤ 15), denoting the number of test cases.

The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.

Output

For each case, print the case number and the number of parallelograms that can be formed.

Sample Input

2

6

0 0

2 0

4 0

1 1

3 1

5 1

7

-2 -1

8 9

5 7

1 1

4 8

2 0

9 8

Sample Output

Case 1: 5

Case 2: 6

给出点的坐标求出能连成平行四边形的数量。

思路:

  用结构体记录每两个点的x坐标和与y坐标和( 相当于记录这两个点为对角线的情况 )然后循环判断多少个对角线的被交点平分(结构体中x,y的值相等)求出对角线的数量,然后C(sum,2)。

 #include<cstdio>
#include<algorithm>
using namespace std;
int x[],y[];
struct stu
{
int x,y;
}st[*/];
bool cmp(stu a,stu b)
{
if(a.x != b.x)
return a.x < b.x;
else
return a.y < b.y;
}
int main()
{
int t,ss=;
scanf("%d",&t);
while(t--)
{
int n,i,j;
scanf("%d",&n);
for(i = ; i < n ; i++)
{
scanf("%d %d",&x[i],&y[i]);
}
int k=;
for(i = ; i < n ; i++)
{
for(j = i+ ; j < n ; j++)
{
st[k].x=x[i]+x[j];
st[k++].y=y[i]+y[j];
}
}
sort(st,st+k,cmp);
int num=,sum=,ans=;
for(i = ; i < k ; i++)
{
if(st[num].x == st[i].x && st[num].y == st[i].y)
sum++; //sum代表线的数量
else
{
ans+=(sum*(sum-)/); //这里是C(sum,2)
num=i;
sum=; }
}
printf("Case %d: %d\n",++ss,ans);
}
}

POJ 1791 Parallelogram Counting(求平行四边形数量)的更多相关文章

  1. Parallelogram Counting(平行四边形个数,思维转化)

    1058 - Parallelogram Counting    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit ...

  2. POJ 1971 Parallelogram Counting (Hash)

          Parallelogram Counting Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6895   Acc ...

  3. poj 1144 (Tarjan求割点数量)

    题目链接:http://poj.org/problem?id=1144 描述 一个电话线公司(简称TLC)正在建立一个新的电话线缆网络.他们连接了若干个地点分别从1到N编号.没有两个地点有相同的号码. ...

  4. POJ 1971 Parallelogram Counting

    题目链接: http://poj.org/problem?id=1971 题意: 二维空间给n个任意三点不共线的坐标,问这些点能够组成多少个不同的平行四边形. 题解: 使用的平行四边形的判断条件:对角 ...

  5. 计算几何 + 统计 --- Parallelogram Counting

    Parallelogram Counting Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5749   Accepted: ...

  6. POJ1144 Network 题解 点双连通分量(求割点数量)

    题目链接:http://poj.org/problem?id=1144 题目大意:给以一个无向图,求割点数量. 这道题目的输入和我们一般见到的不太一样. 它首先输入 \(N\)(\(\lt 100\) ...

  7. 1058 - Parallelogram Counting 计算几何

    1058 - Parallelogram Counting There are n distinct points in the plane, given by their integer coord ...

  8. poj 1474 Video Surveillance - 求多边形有没有核

    /* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...

  9. 洛谷 P1451 求细胞数量

    题目链接 https://www.luogu.org/problemnew/show/P1451 题目描述 一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右若还是细胞数字 ...

随机推荐

  1. NetCore组件

    NetCore之组件写法 本章内容和大家分享的是Asp.NetCore组件写法,在netcore中很多东西都以提供组件的方式来使用,比如MVC架构,Session,Cache,数据库引用等: 这里我也 ...

  2. c++笔记3

    一基本语法: 1.1 字符串:支持标准C的 const char* pch=0/"";//不指向任何对象和指向空字符串.C++提供的string类可提供字符串的所有操作,最好是融合 ...

  3. 解决win10下python3和python2共存pip的问题

    经过在查阅网友的各种经验,发现仍然解决不了问题,python2和python3在win10下的安装就不再演示了,直接在python的官网下载就好,我机器上使用的是python2.7.15和python ...

  4. SmartWeatherAPI C#版

    private string GetKey(string areaId, string type, string date, string appId, string privateKey) { va ...

  5. 牛客网Java刷题知识点之面向对象java的四大特性(抽象、封装、继承、多态)

    不多说,直接上干货! 面向对象java的四大特性之抽象 抽象就是有点模糊的意思,还没确定好的意思. 就比如,要定义一个方法和类.但还没确定怎么去实现它的具体一点的子方法,那我就可以用抽象类或接口.具体 ...

  6. Spark Mllib里如何程序输出数据集的条数(图文详解)

    不多说,直接上干货! 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第17章 决策树多元分类UCI Covertype数据集

  7. nodejs 实践:express 最佳实践(二) 中间件

    express 最佳实践(二):中间件 第一篇 express 最佳实践(一):项目结构 express 中最重要的就是中间件了,可以说中间件组成了express,中间件就是 express 的核心. ...

  8. Ionic 2 中的创建一个闪视卡片组件

    闪视卡片是记忆信息的重要工具,它的使用可以追溯到19世纪.我们将要创建一个很酷的短暂动画来实现它.看起来像是这个样子的: 闪视卡片示例 Ionic 2 实例开发 新增章节将为你介绍如何在Ionic 2 ...

  9. freopen()函数

    freopen函数通过实现标准I/O重定向功能来访问文件,而fopen函数则通过文件I/O来访问文件. freopen函数在算法竞赛中常被使用.在算法竞赛中,参赛者的数据一般需要多次输入,而为避免重复 ...

  10. <转>Java 高并发综合

    并发模型 悲观锁和乐观锁的理解及如何实现,有哪些实现方式? 悲观锁 悲观锁假设最坏的情况(如果你不锁门,那么捣蛋鬼就会闯入并搞得一团糟),并且只有在确保其他线程不会干扰(通过获取正确的锁)的情况下才能 ...