HDFS源码分析心跳汇报之整体结构
我们知道,HDFS全称是Hadoop Distribute FileSystem,即Hadoop分布式文件系统。既然它是一个分布式文件系统,那么肯定存在很多物理节点,而这其中,就会有主从节点之分。在HDFS中,主节点是名字节点NameNode,它负责存储整个HDFS中文件元数据信息,保存了名字节点第一关系和名字节点第二关系。名字节点第一关系是文件与数据块的对应关系,在HDFS正常运行期间,保存在NameNode内存和FSImage文件中,并且在NameNode启动时就由FSImage加载,之后的修改则保持在内容和FSEdit日志文件中,而第二关系则是数据块与数据节点的对应关系,它并非由名字节点的FSImage加载而来,而是在从节点DataNode接入集群后,由其发送心跳信息汇报给主节点NameNode。
那么,何为心跳呢?心跳就是HDFS中从节点DataNode周期性的向名字节点DataNode做汇报,汇报自己的健康情况、负载状况等,并从NameNode处领取命令在本节点执行,保证NameNode这一HDFS指挥官熟悉HDFS的全部运行情况,并对从节点DataNode发号施令,以完成来自外部的数据读写请求或内部的负载均衡等任务。
我们知道,Hadoop2.x版本中,做了两个比较大的改动:一是引入了联邦的概念,允许一个HDFS集群提供多个命名空间服务,第二个是利用HA解决了NameNode单点故障问题,引入了Active NN和Standby NN的概念。
本篇文章,结合Hadoop2.6.0的源码,我们先来看下心跳汇报的整体结构。
众所周知,心跳汇报是从节点DataNode主动发起的周期性向主节点NameNode汇报的一个动作,所以这个问题的突破口自然而然就落在了数据节点DataNode上了。在DataNode内部,有这么一个成员变量blockPoolManager,定义如下:
- // 每个DataNode上都有一个BlockPoolManager实例
- private BlockPoolManager blockPoolManager;
它是每个DataNode上都会存在的BlockPoolManager实例。那么这个BlockPoolManager是什么呢?看下它的定义及成员变量就知道了,代码如下:
- /**
- * Manages the BPOfferService objects for the data node.
- * Creation, removal, starting, stopping, shutdown on BPOfferService
- * objects must be done via APIs in this class.
- *
- * 为DataNode节点管理BPOfferService对象。
- * 对于BPOfferService对象的创建、移除、启动、停止等操作必须通过该类的api来完成。
- */
- @InterfaceAudience.Private
- class BlockPoolManager {
- private static final Log LOG = DataNode.LOG;
- // NameserviceId与BPOfferService的对应关系
- private final Map<String, BPOfferService> bpByNameserviceId =
- Maps.newHashMap();
- // BlockPoolId与BPOfferService的对应关系
- private final Map<String, BPOfferService> bpByBlockPoolId =
- Maps.newHashMap();
- // 所有的BPOfferService
- private final List<BPOfferService> offerServices =
- Lists.newArrayList();
- // DataNode实例dn
- private final DataNode dn;
- //This lock is used only to ensure exclusion of refreshNamenodes
- // 这个refreshNamenodesLock仅仅在refreshNamenodes()方法中被用作互斥锁
- private final Object refreshNamenodesLock = new Object();
- // 构造函数
- BlockPoolManager(DataNode dn) {
- this.dn = dn;
- }
- }
由类的注释我们可以知道,BlockPoolManager为DataNode节点管理BPOfferService对象。对于BPOfferService对象的创建、移除、启动、停止等操作必须通过类BlockPoolManager的API来完成。而且,BlockPoolManager中主要包含如下几个数据结构:
1、保存nameserviceId与BPOfferService的对应关系的HashMap:bpByNameserviceId;
2、保存blockPoolId与BPOfferService的对应关系的HashMap:bpByBlockPoolId;
3、保存所有BPOfferService的ArrayList:offerServices;
4、DataNode实例dn;
5、refreshNamenodes()方法中用于线程间同步或互斥锁的Object:refreshNamenodesLock。
由前三个成员变量,我们可以清楚的知道,BlockPoolManager主要维护的就是该DataNode上的BPOfferService对象,及其所属nameserviceId、blockPoolId。nameserviceId我们可以理解为HDFS集群中某一特定命名服务空间的唯一标识,blockPoolId则对应为该命名服务空间中的一个块池,或者说一组数据块的唯一标识,那么,什么是BPOfferService呢?我们继续往下看BPOfferService的源码,看下它类的定义及其成员变量,代码如下:
- /**
- * One instance per block-pool/namespace on the DN, which handles the
- * heartbeats to the active and standby NNs for that namespace.
- * This class manages an instance of {@link BPServiceActor} for each NN,
- * and delegates calls to both NNs.
- * It also maintains the state about which of the NNs is considered active.
- *
- * DataNode上每个块池或命名空间对应的一个实例,它处理该命名空间到对应活跃或备份状态NameNode的心跳。
- * 这个类管理每个NameNode的一个BPServiceActor实例,在两个NanmeNode之间调用。
- * 它也保存了哪个NameNode是active状态。
- */
- @InterfaceAudience.Private
- class BPOfferService {
- static final Log LOG = DataNode.LOG;
- /**
- * Information about the namespace that this service
- * is registering with. This is assigned after
- * the first phase of the handshake.
- *
- * 该服务登记的命名空间信息。第一阶段握手即被分配。
- * NamespaceInfo中有个blockPoolID变量,显示了NameSpace与blockPool是一对一的关系
- */
- NamespaceInfo bpNSInfo;
- /**
- * The registration information for this block pool.
- * This is assigned after the second phase of the
- * handshake.
- *
- * 块池的注册信息,在第二阶段握手被分配
- */
- volatile DatanodeRegistration bpRegistration;
- /**
- * 服务所在DataNode节点
- */
- private final DataNode dn;
- /**
- * A reference to the BPServiceActor associated with the currently
- * ACTIVE NN. In the case that all NameNodes are in STANDBY mode,
- * this can be null. If non-null, this must always refer to a member
- * of the {@link #bpServices} list.
- *
- * 与当前活跃NameNode相关的BPServiceActor引用
- */
- private BPServiceActor bpServiceToActive = null;
- /**
- * The list of all actors for namenodes in this nameservice, regardless
- * of their active or standby states.
- * 该命名服务对应的所有NameNode的BPServiceActor实例列表,不管NameNode是活跃的还是备份的
- */
- private final List<BPServiceActor> bpServices =
- new CopyOnWriteArrayList<BPServiceActor>();
- /**
- * Each time we receive a heartbeat from a NN claiming to be ACTIVE,
- * we record that NN's most recent transaction ID here, so long as it
- * is more recent than the previous value. This allows us to detect
- * split-brain scenarios in which a prior NN is still asserting its
- * ACTIVE state but with a too-low transaction ID. See HDFS-2627
- * for details.
- *
- * 每次我们接收到一个NameNode要求成为活跃的心跳,都会在这里记录那个NameNode最近的事务ID,只要它
- * 比之前的那个值大。这要求我们去检测裂脑的情景,比如一个之前的NameNode主张保持着活跃状态,但还是使用了较低的事务ID。
- */
- private long lastActiveClaimTxId = -1;
- // 读写锁mReadWriteLock
- private final ReentrantReadWriteLock mReadWriteLock =
- new ReentrantReadWriteLock();
- // mReadWriteLock上的读锁mReadLock
- private final Lock mReadLock = mReadWriteLock.readLock();
- // mReadWriteLock上的写锁mWriteLock
- private final Lock mWriteLock = mReadWriteLock.writeLock();
- // utility methods to acquire and release read lock and write lock
- void readLock() {
- mReadLock.lock();
- }
- void readUnlock() {
- mReadLock.unlock();
- }
- void writeLock() {
- mWriteLock.lock();
- }
- void writeUnlock() {
- mWriteLock.unlock();
- }
- BPOfferService(List<InetSocketAddress> nnAddrs, DataNode dn) {
- Preconditions.checkArgument(!nnAddrs.isEmpty(),
- "Must pass at least one NN.");
- this.dn = dn;
- // 每个namenode一个BPServiceActor
- for (InetSocketAddress addr : nnAddrs) {
- this.bpServices.add(new BPServiceActor(addr, this));
- }
- }
- }
由上述代码我们可以得知,BPOfferService为DataNode上每个块池或命名空间对应的一个实例,它处理该命名空间到对应活跃或备份状态NameNode的心跳。这个类管理每个NameNode的一个BPServiceActor实例,同时它也保存了哪个NameNode是active状态。撇开其他成员变量先不说,该类有两个十分重要的成员变量,分别是:
1、bpServiceToActive:BPServiceActor类型的,表示与当前活跃NameNode相关的BPServiceActor引用;
2、bpServices:CopyOnWriteArrayList<BPServiceActor>类型的列表,表示该命名服务对应的所有NameNode的BPServiceActor实例列表,不管NameNode是活跃的还是备份的。
由此可以看出,BPOfferService实际上是每个命名服务空间所对应的一组BPServiceActor的管理者,这些BPServiceActor全部存储在bpServices列表中,并且由bpServices表示当前与active NN连接的BPServiceActor对象的引用,而bpServices对应的则是连接到所有NN的BPServiceActor,无论这个NN是active状态还是standby状态。那么,问题又来了?BPServiceActor是什么呢?继续吧!
- /**
- * A thread per active or standby namenode to perform:
- * <ul>
- * <li> Pre-registration handshake with namenode</li>
- * <li> Registration with namenode</li>
- * <li> Send periodic heartbeats to the namenode</li>
- * <li> Handle commands received from the namenode</li>
- * </ul>
- *
- * 每个活跃active或备份standby状态NameNode对应的线程,它负责完成以下操作:
- * 1、与NameNode进行预登记握手;
- * 2、在NameNode上注册;
- * 3、发送周期性的心跳给NameNode;
- * 4、处理从NameNode接收到的请求。
- */
- @InterfaceAudience.Private
- // 实现Runnable接口意味着BPServiceActor是一个线程
- class BPServiceActor implements Runnable {
- static final Log LOG = DataNode.LOG;
- // NameNode地址
- final InetSocketAddress nnAddr;
- // HA服务状态
- HAServiceState state;
- // BPServiceActor线程所属BPOfferService
- final BPOfferService bpos;
- // lastBlockReport, lastDeletedReport and lastHeartbeat may be assigned/read
- // by testing threads (through BPServiceActor#triggerXXX), while also
- // assigned/read by the actor thread. Thus they should be declared as volatile
- // to make sure the "happens-before" consistency.
- volatile long lastBlockReport = 0;
- volatile long lastDeletedReport = 0;
- boolean resetBlockReportTime = true;
- volatile long lastCacheReport = 0;
- Thread bpThread;
- DatanodeProtocolClientSideTranslatorPB bpNamenode;
- private volatile long lastHeartbeat = 0;
- /**
- * 枚举类,运行状态,包括
- * CONNECTING 正在连接
- * INIT_FAILED 初始化失败
- * RUNNING 正在运行
- * EXITED 已退出
- * FAILED 已失败
- */
- static enum RunningState {
- CONNECTING, INIT_FAILED, RUNNING, EXITED, FAILED;
- }
- // 运行状态runningState默认为枚举类RunningState的CONNECTING,表示正在连接
- private volatile RunningState runningState = RunningState.CONNECTING;
- /**
- * Between block reports (which happen on the order of once an hour) the
- * DN reports smaller incremental changes to its block list. This map,
- * keyed by block ID, contains the pending changes which have yet to be
- * reported to the NN. Access should be synchronized on this object.
- *
- *
- */
- private final Map<DatanodeStorage, PerStoragePendingIncrementalBR>
- pendingIncrementalBRperStorage = Maps.newHashMap();
- // IBR = Incremental Block Report. If this flag is set then an IBR will be
- // sent immediately by the actor thread without waiting for the IBR timer
- // to elapse.
- private volatile boolean sendImmediateIBR = false;
- private volatile boolean shouldServiceRun = true;
- private final DataNode dn;
- private final DNConf dnConf;
- private DatanodeRegistration bpRegistration;
- // 构造方法,BPServiceActor被创建时就已明确知道NameNode地址InetSocketAddress类型的nnAddr,和BPOfferService类型的bpos
- BPServiceActor(InetSocketAddress nnAddr, BPOfferService bpos) {
- this.bpos = bpos;
- this.dn = bpos.getDataNode();
- this.nnAddr = nnAddr;
- this.dnConf = dn.getDnConf();
- }
- }
聪明的您,是不是一眼就能看出,BPServiceActor就是实际与某个特定NameNode通信的工作线程呢?它是每个活跃active或备份standby状态NameNode对应的线程,它负责完成以下操作:
1、与NameNode进行预登记握手;
2、在NameNode上注册;
3、发送周期性的心跳给NameNode;
4、处理从NameNode接收到的请求。
关于BPServiceActor的具体实现,我们放到以后再讲,下面我们再折回去,稍微总结下HDFS心跳的整体架构,忽略掉部分细节后,大体架构如图所示:
首先,每个DataNode上都有一个BlockPoolManager实例;
其次,每个BlockPoolManager实例管理着所有命名服务空间对应的BPOfferService实例:命名服务空间你可以理解为HDFS中逻辑意义上的某个单独的文件系统;
然后,每个BPOfferService实例则管理者它所对应命名服务空间内到所有NameNode的BPServiceActor工作线程:包含一个Active与若干Standby状态的NN;
最后,BPServiceActor对应的是针对特定的NameNode进行通讯和完成心跳与接收响应命令的工作线程。
上述就是HDFS中心跳汇报的整体结构,由DataNode上BlockPoolManager、BPOfferService和BPServiceActor等三层架构实现,由上到下体现了HDFS中存在多个命名服务空间NameService,每个命名服务空间NameService对应着一个BPOfferService,它负责管理多个BPServiceActor工作线程,每个BPServiceActor则是DataNode上具体与每个NameNode通信完成心跳的工作线程,而这些对应关系,特别是HDFS上有多少命名服务NS,每个命名服务涉及哪些名字节点NN,则是从HDFS的配置文件中获取的。
关于HDFS中心跳涉及的数据结构如何初始化,我们下节再讲!
HDFS源码分析心跳汇报之整体结构的更多相关文章
- HDFS源码分析心跳汇报之数据结构初始化
在<HDFS源码分析心跳汇报之整体结构>一文中,我们详细了解了HDFS中关于心跳的整体结构,知道了BlockPoolManager.BPOfferService和BPServiceActo ...
- HDFS源码分析心跳汇报之周期性心跳
HDFS源码分析心跳汇报之周期性心跳,近期推出!
- HDFS源码分析心跳汇报之DataNode注册
HDFS源码分析心跳汇报之DataNode注册,近期推出!
- HDFS源码分析心跳汇报之数据块汇报
在<HDFS源码分析心跳汇报之数据块增量汇报>一文中,我们详细介绍了数据块增量汇报的内容,了解到它是时间间隔更长的正常数据块汇报周期内一个smaller的数据块汇报,它负责将DataNod ...
- HDFS源码分析心跳汇报之BPServiceActor工作线程运行流程
在<HDFS源码分析心跳汇报之数据结构初始化>一文中,我们了解到HDFS心跳相关的BlockPoolManager.BPOfferService.BPServiceActor三者之间的关系 ...
- HDFS源码分析心跳汇报之数据块增量汇报
在<HDFS源码分析心跳汇报之BPServiceActor工作线程运行流程>一文中,我们详细了解了数据节点DataNode周期性发送心跳给名字节点NameNode的BPServiceAct ...
- HDFS源码分析数据块汇报之损坏数据块检测checkReplicaCorrupt()
无论是第一次,还是之后的每次数据块汇报,名字名字节点都会对汇报上来的数据块进行检测,看看其是否为损坏的数据块.那么,损坏数据块是如何被检测的呢?本文,我们将研究下损坏数据块检测的checkReplic ...
- HDFS源码分析数据块校验之DataBlockScanner
DataBlockScanner是运行在数据节点DataNode上的一个后台线程.它为所有的块池管理块扫描.针对每个块池,一个BlockPoolSliceScanner对象将会被创建,其运行在一个单独 ...
- HDFS源码分析数据块复制监控线程ReplicationMonitor(一)
ReplicationMonitor是HDFS中关于数据块复制的监控线程,它的主要作用就是计算DataNode工作,并将复制请求超时的块重新加入到待调度队列.其定义及作为线程核心的run()方法如下: ...
随机推荐
- Bits
先%SY... 课件链接 求1的个数 以32位整数为例子,最暴力的方法就是一位一位的数,但是这样太不优美... 以下是优美的方法... 这个问题其实就是二进制求和... 我们考虑分治的思想...每一次 ...
- .net连接mysql
首先在官网下载,mysql-connect-net,用于使用mysql的驱动程序,我在下载mysql-connect-net.msi. installer后,执行安装程序的时候一直无法安装成功,最简单 ...
- PE笔记之NT头PE文件头
typedef struct _IMAGE_FILE_HEADER { WORD Machine; //014C-IMAGE_FILE ...
- 为什么mfc的入口是InitInstance()而没有WinMain() (转)
学过PE文件格式,就明白,程序在进入WinMain之前要做很多事情,比如初始Dos头,分配函数表,初始化全局变量,之后才进入程序入口(WinMain) MFC对WindowsAPI进行了封装.在用向导 ...
- 《Linux命令行与shell脚本编程大全 第3版》Linux命令行---41
以下为阅读<Linux命令行与shell脚本编程大全 第3版>的读书笔记,为了方便记录,特地与书的内容保持同步,特意做成一节一次随笔,特记录如下:
- [Oracle] Redo&Undo梳理
Oracle Redo&undo Oracle中的redo和undo是关键技术的核心, 诸如实例恢复, 介质恢复, DataGuard, 闪回机制等都是给予redo和undo的, 所以很有必要 ...
- UVA 10976 Fractions Again?!【暴力枚举/注意推导下/分子分母分开保存】
[题意]:给你一个数k,求所有使得1/k = 1/x + 1/y成立的x≥y的整数对. [分析]:枚举所有在区间[k+1, 2k]上的 y 即可,当 1/k - 1/y 的结果分子为1即为一组解. [ ...
- 10.1综合强化刷题 Day2
a[问题描述]你是能看到第一题的 friends呢. —— hja世界上没有什么比卖的这 贵弹丸三还令人绝 ...
- Break Number --AtCoder
题目描述 Takahashi loves numbers divisible by 2.You are given a positive integer N. Among the integers b ...
- HashMap之equals和hashCode小陷阱
先以一段代码开始这篇blog. 01 public class Name { 02 03 private String first; //first name 04 private Str ...