mysql批量sql插入优化
对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因此,优化数据库插入性能是很有意义的。
经过对MySQL innodb的一些性能测试,发现一些可以提高insert效率的方法,供大家参考参考。
1. 一条SQL语句插入多条数据。
常用的插入语句如:
|
1
2
3
4
|
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0);INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1); |
修改成:
|
1
2
|
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0), ('1', 'userid_1', 'content_1', 1); |
修改后的插入操作能够提高程序的插入效率。这里第二种SQL执行效率高的主要原因是合并后日志量(MySQL的binlog和innodb的事务让日志)减少了,降低日志刷盘的数据量和频率,从而提高效率。通过合并SQL语句,同时也能减少SQL语句解析的次数,减少网络传输的IO。
这里提供一些测试对比数据,分别是进行单条数据的导入与转化成一条SQL语句进行导入,分别测试1百、1千、1万条数据记录。
2. 在事务中进行插入处理。
把插入修改成:
|
1
2
3
4
5
6
7
|
START TRANSACTION;INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0);INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1);...COMMIT; |
使用事务可以提高数据的插入效率,这是因为进行一个INSERT操作时,MySQL内部会建立一个事务,在事务内才进行真正插入处理操作。通过使用事务可以减少创建事务的消耗,所有插入都在执行后才进行提交操作。
这里也提供了测试对比,分别是不使用事务与使用事务在记录数为1百、1千、1万的情况。
3. 数据有序插入。
数据有序的插入是指插入记录在主键上是有序排列,例如datetime是记录的主键:
|
1
2
3
4
5
6
|
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1);INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0);INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('2', 'userid_2', 'content_2',2); |
修改成:
|
1
2
3
4
5
6
|
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0);INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1);INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('2', 'userid_2', 'content_2',2); |
由于数据库插入时,需要维护索引数据,无序的记录会增大维护索引的成本。我们可以参照innodb使用的B+tree索引,如果每次插入记录都在索引的最后面,索引的定位效率很高,并且对索引调整较小;如果插入的记录在索引中间,需要B+tree进行分裂合并等处理,会消耗比较多计算资源,并且插入记录的索引定位效率会下降,数据量较大时会有频繁的磁盘操作。
下面提供随机数据与顺序数据的性能对比,分别是记录为1百、1千、1万、10万、100万。
从测试结果来看,该优化方法的性能有所提高,但是提高并不是很明显。
性能综合测试:
这里提供了同时使用上面三种方法进行INSERT效率优化的测试。
从测试结果可以看到,合并数据+事务的方法在较小数据量时,性能提高是很明显的,数据量较大时(1千万以上),性能会急剧下降,这是由于此时数据量超过了innodb_buffer的容量,每次定位索引涉及较多的磁盘读写操作,性能下降较快。而使用合并数据+事务+有序数据的方式在数据量达到千万级以上表现依旧是良好,在数据量较大时,有序数据索引定位较为方便,不需要频繁对磁盘进行读写操作,所以可以维持较高的性能。
注意事项:
1. SQL语句是有长度限制,在进行数据合并在同一SQL中务必不能超过SQL长度限制,通过max_allowed_packet配置可以修改,默认是1M,测试时修改为8M。
2. 事务需要控制大小,事务太大可能会影响执行的效率。MySQL有innodb_log_buffer_size配置项,超过这个值会把innodb的数据刷到磁盘中,这时,效率会有所下降。所以比较好的做法是,在数据达到这个这个值前进行事务提交。
mysql批量sql插入优化的更多相关文章
- 【转】MySQL批量SQL插入各种性能优化
原文:http://mp.weixin.qq.com/s?__biz=MzA5MzY4NTQwMA==&mid=403182899&idx=1&sn=74edf28b0bd29 ...
- MySQL批量SQL插入性能优化
对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长.特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久.因此,优化数据库插入性能是很有意义的. ...
- MySQL批量SQL插入各种性能优化
对于一些数据量较大的系统.数据库面临的问题除了查询效率低下,还有就是数据入库时间长.特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久.因此.优化数据库插入性能是非常有意义的 ...
- php面试专题---MySQL常用SQL语句优化
php面试专题---MySQL常用SQL语句优化 一.总结 一句话总结: 原理,万变不离其宗:其实SQL语句优化的过程中,无非就是对mysql的执行计划理解,以及B+树索引的理解,其实只要我们理解执行 ...
- mysql的sql语句优化方法面试题总结
mysql的sql语句优化方法面试题总结 不要写一些没有意义的查询,如需要生成一个空表结构: select col1,col2 into #t from t where 1=0 这类代码不会返回任何结 ...
- MySQL常用SQL语句优化
推荐阅读这篇博文,索引说的非常详细到位:http://blog.linezing.com/?p=798#nav-3-2 在数据库日常维护中,最常做的事情就是SQL语句优化,因为这个才是影响性能的最主要 ...
- MySQL数据库SQL层级优化
本篇主涉及MySQL SQL Statements层面的优化. 首先,推荐一个链接为万物之始:http://dev.mysql.com/doc/refman/5.0/en/optimization.h ...
- MySQL 数据库--SQL语句优化
explain查询和分析sql 开发中,为满足一业务功能,使用mysql书写sql时,一条sql往往有多种写法,那么我们就需要选择执行效率比较高的sql. 因此要比较分析sql的执行过程,且同一条sq ...
- MySQL之SQL语句优化
语句优化 即优化器利用自身的优化器来对我们写的SQL进行优化,然后再将其放入InnoDB引擎中执行. 条件简化 移除不必要的括号 select * from x where ((a = 5)); 上面 ...
随机推荐
- BT原理分析(转)
BT种子文件结构分析,参考:http://www.cnblogs.com/EasonJim/p/6601047.html BT下载,参考:http://baike.baidu.com/item/BT下 ...
- XCode 4.3 Unable to load persistent store UserDictionary.sqlite 以及 ios simulator failed to install the application
I have been working on an iOS app for some time, all of a sudden I am getting the following crash ev ...
- andriod 获得应用程序名称
import android.annotation.TargetApi; import android.app.Activity; import android.app.AlertDialog; im ...
- .Net ToString Format [转]
源文 :http://blog.csdn.net/luyifeiniu/article/category/25663/2 stringstr1 =string.Format("{0:N1}& ...
- Error building Player: Win32Exception: ApplicationName='E:/adt-20140702/sdk\tools\zipalign.exe', Com
1.原因 更新sdk后报错..由于版本号不同,zipalign.exe所处路径不同 2.解决的方法 在sdk路径下搜索zipalign.exe .然后拷贝到报错内容中制定的路径即可了.
- C++类的大小(转)
一个空类class A{};的大小为什么是1,因为如果不是1,当定义这个类的对象数组时候A objects[5]; objects[0]和objects[1]就在同一个地址处,就无法区分. 单继承 # ...
- Java序列化算法
Serialization(序列化)是一种将对象以一连串的字节描述的过程:反序列化deserialization是一种将这些字节重建成一个对象的过程.java序列化API提供一种处理对象序列化的标准机 ...
- SpringBoot学习之验证信息国际化
以登录为例: 1.controller的登录方法: @RequestMapping("/SSOAuth/login") @ResponseBody public ResponseV ...
- iOS 浅赋值、深复制、全然复制的知识点梳理验证(附加归档解档)
写于前: 在之前转载的一片文章中.文中对浅复制和深复制进行了具体的解读,同一时候还提到了深复制(one-level-deep copy).全然复制(true copy)的概念,并指出iOS开发中的深复 ...
- windows下的txt格式转换成linux下的TXT
存在的问题是 多出一个方框或者黑格子 主要是因为bash 不能忽略windows的问题 用sed 命令来处理,分别是windows转linux,linux转windows sed -e 's/.$// ...